Abstract

Nd-doped Y3GaxAl(5-x)O12 (YGAG) materials are investigated for their usefulness as compositionally tuned laser materials. An analysis of line-center wavelength, line broadening, and line strength with Ga concentration is conducted to assess the feasibility of constructing a compositionally tuned 0.94-μm laser. Spectroscopic results on this analysis are presented. A laser rod of Nd:Y3Ga1.35Al3.65O12 was made to lase at 0.94465 μm and its performance characterized. This represents the first such laser demonstration on the 4F3/24I9/2 laser transition in Nd:YGAG. Improved optical quality and the use of compositional variations of the YGAG structure is expected to improve the laser performance as these materials are more fully developed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Reisberg, R. M. Brown, and W. C. Holton, Appl. Phys. Lett. 23, 127 (1973).
    [CrossRef]
  2. L. A. Reisberg and W. C. Holton, Opt. Commun. 9, 298 (1973).
    [CrossRef]
  3. R. K. Watts and W. C. Holton, J. Appl. Phys. 45, 873 (1974).
    [CrossRef]
  4. M. Zokai, R. C. Powell, G. F. Imbusch, and B. Di Bartolo, J. Appl. Phys. 50, 5930 (1979).
    [CrossRef]
  5. N. P. Barnes, B. M. Walsh, K. E. Murray, E. B. Ertur, and R. L. Hutcheson, in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 522.
  6. N. P. Barnes, Laser Focus World, 87 (1994).
  7. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998).
    [CrossRef]
  8. M. Marezio, J. P. Remeika, and A. J. Jayarman, Phys. Rev. 45, 1821 (1966).
  9. M. Marezio, J. P. Remeika, and P. D. Dernier, Acta Crystallogr. B24, 1670 (1967).
  10. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, Phys. Rev. B 57, 7673 (1998).
    [CrossRef]
  11. N. P. Barnes, B. M. Walsh, and K. E. Murray, in Advanced Solid-State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 115.

1998 (2)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, Phys. Rev. B 57, 7673 (1998).
[CrossRef]

1994 (1)

N. P. Barnes, Laser Focus World, 87 (1994).

1979 (1)

M. Zokai, R. C. Powell, G. F. Imbusch, and B. Di Bartolo, J. Appl. Phys. 50, 5930 (1979).
[CrossRef]

1974 (1)

R. K. Watts and W. C. Holton, J. Appl. Phys. 45, 873 (1974).
[CrossRef]

1973 (2)

L. A. Reisberg, R. M. Brown, and W. C. Holton, Appl. Phys. Lett. 23, 127 (1973).
[CrossRef]

L. A. Reisberg and W. C. Holton, Opt. Commun. 9, 298 (1973).
[CrossRef]

1967 (1)

M. Marezio, J. P. Remeika, and P. D. Dernier, Acta Crystallogr. B24, 1670 (1967).

1966 (1)

M. Marezio, J. P. Remeika, and A. J. Jayarman, Phys. Rev. 45, 1821 (1966).

Anderson, J. E.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, Phys. Rev. B 57, 7673 (1998).
[CrossRef]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998).
[CrossRef]

N. P. Barnes, Laser Focus World, 87 (1994).

Brown, R. M.

L. A. Reisberg, R. M. Brown, and W. C. Holton, Appl. Phys. Lett. 23, 127 (1973).
[CrossRef]

Buchwald, M. I.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, Phys. Rev. B 57, 7673 (1998).
[CrossRef]

Dernier, P. D.

M. Marezio, J. P. Remeika, and P. D. Dernier, Acta Crystallogr. B24, 1670 (1967).

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998).
[CrossRef]

M. Zokai, R. C. Powell, G. F. Imbusch, and B. Di Bartolo, J. Appl. Phys. 50, 5930 (1979).
[CrossRef]

Edwards, B. C.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, Phys. Rev. B 57, 7673 (1998).
[CrossRef]

Epstein, R. I.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, Phys. Rev. B 57, 7673 (1998).
[CrossRef]

Holton, W. C.

R. K. Watts and W. C. Holton, J. Appl. Phys. 45, 873 (1974).
[CrossRef]

L. A. Reisberg, R. M. Brown, and W. C. Holton, Appl. Phys. Lett. 23, 127 (1973).
[CrossRef]

L. A. Reisberg and W. C. Holton, Opt. Commun. 9, 298 (1973).
[CrossRef]

Imbusch, G. F.

M. Zokai, R. C. Powell, G. F. Imbusch, and B. Di Bartolo, J. Appl. Phys. 50, 5930 (1979).
[CrossRef]

Jayarman, A. J.

M. Marezio, J. P. Remeika, and A. J. Jayarman, Phys. Rev. 45, 1821 (1966).

Lei, G.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, Phys. Rev. B 57, 7673 (1998).
[CrossRef]

Marezio, M.

M. Marezio, J. P. Remeika, and P. D. Dernier, Acta Crystallogr. B24, 1670 (1967).

M. Marezio, J. P. Remeika, and A. J. Jayarman, Phys. Rev. 45, 1821 (1966).

Powell, R. C.

M. Zokai, R. C. Powell, G. F. Imbusch, and B. Di Bartolo, J. Appl. Phys. 50, 5930 (1979).
[CrossRef]

Reisberg, L. A.

L. A. Reisberg, R. M. Brown, and W. C. Holton, Appl. Phys. Lett. 23, 127 (1973).
[CrossRef]

L. A. Reisberg and W. C. Holton, Opt. Commun. 9, 298 (1973).
[CrossRef]

Remeika, J. P.

M. Marezio, J. P. Remeika, and P. D. Dernier, Acta Crystallogr. B24, 1670 (1967).

M. Marezio, J. P. Remeika, and A. J. Jayarman, Phys. Rev. 45, 1821 (1966).

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998).
[CrossRef]

Watts, R. K.

R. K. Watts and W. C. Holton, J. Appl. Phys. 45, 873 (1974).
[CrossRef]

Zokai, M.

M. Zokai, R. C. Powell, G. F. Imbusch, and B. Di Bartolo, J. Appl. Phys. 50, 5930 (1979).
[CrossRef]

Acta Crystallogr. (1)

M. Marezio, J. P. Remeika, and P. D. Dernier, Acta Crystallogr. B24, 1670 (1967).

Appl. Phys. Lett. (1)

L. A. Reisberg, R. M. Brown, and W. C. Holton, Appl. Phys. Lett. 23, 127 (1973).
[CrossRef]

J. Appl. Phys. (3)

R. K. Watts and W. C. Holton, J. Appl. Phys. 45, 873 (1974).
[CrossRef]

M. Zokai, R. C. Powell, G. F. Imbusch, and B. Di Bartolo, J. Appl. Phys. 50, 5930 (1979).
[CrossRef]

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998).
[CrossRef]

Laser Focus World (1)

N. P. Barnes, Laser Focus World, 87 (1994).

Opt. Commun. (1)

L. A. Reisberg and W. C. Holton, Opt. Commun. 9, 298 (1973).
[CrossRef]

Phys. Rev. (1)

M. Marezio, J. P. Remeika, and A. J. Jayarman, Phys. Rev. 45, 1821 (1966).

Phys. Rev. B (1)

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, Phys. Rev. B 57, 7673 (1998).
[CrossRef]

Other (2)

N. P. Barnes, B. M. Walsh, and K. E. Murray, in Advanced Solid-State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 115.

N. P. Barnes, B. M. Walsh, K. E. Murray, E. B. Ertur, and R. L. Hutcheson, in Advanced Solid-State Lasers, Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), p. 522.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Emission cross sections of the 4F3/24I9/2 transition in Nd:YGAG.

Fig. 2
Fig. 2

Emission cross sections of the 4F3/24I11/2 transition in Nd:YGAG.

Fig. 3
Fig. 3

Emission cross sections of the 4F3/24I13/2 transition in Nd:YGAG.

Fig. 4
Fig. 4

Inhomogeneous linewidth versus Ga concentration for lines in the 4F3/24I9/2 transition in Nd:YGAG.

Fig. 5
Fig. 5

Measured energy levels of Nd:YAG and Nd:YGG at 295 K.

Fig. 6
Fig. 6

Line-center wavelength versus Ga concentration for lines in the 4F3/24I9/2 transition in Nd:YGAG.

Fig. 7
Fig. 7

Theoretical prediction of line-center wavelength versus Ga concentration for lines in the 4F3/24I9/2 transition in Nd:YGAG.

Fig. 8
Fig. 8

Line-strength fraction versus Ga concentration of the R1Z5 line in Nd:YGAG.

Fig. 9
Fig. 9

Peak wavelength versus Ga concentration of the R1Z5 line in Nd:YGAG.

Fig. 10
Fig. 10

Laser performance of the R1Z5 line of the 4F3/24I9/2 transition for Nd in various materials.

Tables (3)

Tables Icon

Table 1 Parameters for Calculation of Emission Cross Section in Nd:YGAG

Tables Icon

Table 2 Results of Lorentzian Line Fit for Selected Transitions in Nd:YGAG

Tables Icon

Table 3 Performance of 0.94-μm Lasing in Nd

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

nYGAG= [(5-x)nYAG+xnYGG],
λYGAG= [(5-x)λYAG+xλYGG].
Anm=-qe2i ZiCnm(i)Rin+1,
Cnm(i)=4π2n+11/2Ynm(θ, ϕ).
(1+Δa/a)-n-11-(n+1)Δa/a.

Metrics