Abstract

The Bragg selectivity of volume holograms makes them not well suited for many Fourier imaging processing applications in the space domain because they perform the function of a spatial filter and limit the field of view. Similarly, for femtosecond pulse holography they reduce the spectral bandwidth of the diffracted signal. However, we show both theoretically and experimentally that it is much easier in the frequency domain than in the space domain to achieve a large enough diffraction bandwidth of volume holograms for the bandwidth of 100-fs pulses to be used for frequency-domain femtosecond pulse shaping. The experiments were performed by nondegenerate four-wave mixing in photorefractive InP:Fe with femtosecond readout at 1.5 μm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]
  2. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, “Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28, 908 (1992).
    [CrossRef]
  3. C. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19, 737 (1994).
    [CrossRef] [PubMed]
  4. K. Ema, “Real-time ultrashort pulse shaping and pulse shape measurement using a dynamic grating,” Jpn. J. Appl. Phys., Part 2 30, L2046 (1991).
    [CrossRef]
  5. P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988, 1989), Vols. 1 and 2.
  6. J. Heanue, M. Bashaw, and L. Hesselink, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611 (1993).
    [CrossRef]
  7. R. Muller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241 (1994).
    [CrossRef]
  8. R. A. Athale and K. Raj, “Fourier-plane filtering by a thick grating: a space–bandwidth analysis,” Opt. Lett. 17, 880 (1992).
    [CrossRef]
  9. M. G. Nicholson, I. R. Cooper, M. W. McCall, and C. R. Petts, “Simple computational model of image correlation by four-wave mixing in photorefractive media,” Appl. Opt. 26, 278 (1987).
    [CrossRef] [PubMed]
  10. L. Pichon and J. P. Huignard, “Dynamic joint-Fourier-transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277 (1981).
    [CrossRef]
  11. F. T. S. Yu, S. Wu, S. Rajan, and D. A. Gregory, “Compact joint transform correlator with a thick photorefractive crystal,” Appl. Opt. 31, 2416 (1992).
    [CrossRef] [PubMed]
  12. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
    [CrossRef] [PubMed]
  13. D. D. Nolte, Q. N. Wang, and M. R. Melloch, “Robust infrared gratings in photorefractive quantum wells generated by an above-band-gap laser,” Appl. Phys. Lett. 58, 2067 (1991).
    [CrossRef]
  14. K. Oba, P. C. Sun, and Y. Fainman, “Nonvolatile photorefractive spectral holography for time domain storage of femtosecond pulses,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 213–214.
  15. K. Oba, P. C. Sun, and Y. Fainman, “Nonvolatile photorefractive spectral holography,” Opt. Lett. 23, 915 (1998).
    [CrossRef]
  16. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, and Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728 (1995).
    [CrossRef] [PubMed]
  17. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718 (1997).
    [CrossRef] [PubMed]
  18. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge-enhancement of time-domain images,” Opt. Lett. 22, 1101 (1997).
    [CrossRef] [PubMed]
  19. J. E. Millerd, S. D. Koehler, E. M. Garmire, A. Partovi, and A. M. Glass, “Photorefractive gain enhancement using band-edge resonance and temperature stabilization,” Appl. Phys. Lett. 57, 2776 (1990).
    [CrossRef]
  20. H. J. Eichler, Y. Ding, and B. Smandek, “Two-wave mixing in InP:Fe at 1064 nm by linear and quadratic photorefractive effect,” Opt. Commun. 94, 127 (1992).
    [CrossRef]
  21. N. Wolffer, P. Gravey, G. Picoli, and V. Vieux, “Double phase conjugated mirror and double color pumped oscillator using band-edge photorefractivity in InP:Fe,” Opt. Commun. 89, 17 (1992).
    [CrossRef]
  22. Y. Ding and H. J. Eichler, “Crystal orientation dependence of the photorefractive four-wave mixing in compound semiconductors of symmetry group 4¯3m,” Opt. Commun. 110, 456 (1994).
    [CrossRef]
  23. G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
    [CrossRef]
  24. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  25. C. Ozkul, G. Picoli, P. Gravey, and N. Wolffer, “High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields,” Appl. Opt. 29, 2711 (1990).
    [CrossRef] [PubMed]
  26. H. J. Eichler, P. Günter, and D. W. Wohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
  27. O. J. Glembocki and H. Piller, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), p. 503.
  28. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995), p. 65.

1998 (1)

1997 (2)

1995 (1)

1994 (4)

C. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19, 737 (1994).
[CrossRef] [PubMed]

Y. Ding and H. J. Eichler, “Crystal orientation dependence of the photorefractive four-wave mixing in compound semiconductors of symmetry group 4¯3m,” Opt. Commun. 110, 456 (1994).
[CrossRef]

R. Muller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241 (1994).
[CrossRef]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[CrossRef] [PubMed]

1993 (1)

J. Heanue, M. Bashaw, and L. Hesselink, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

1992 (5)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, “Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

H. J. Eichler, Y. Ding, and B. Smandek, “Two-wave mixing in InP:Fe at 1064 nm by linear and quadratic photorefractive effect,” Opt. Commun. 94, 127 (1992).
[CrossRef]

N. Wolffer, P. Gravey, G. Picoli, and V. Vieux, “Double phase conjugated mirror and double color pumped oscillator using band-edge photorefractivity in InP:Fe,” Opt. Commun. 89, 17 (1992).
[CrossRef]

R. A. Athale and K. Raj, “Fourier-plane filtering by a thick grating: a space–bandwidth analysis,” Opt. Lett. 17, 880 (1992).
[CrossRef]

F. T. S. Yu, S. Wu, S. Rajan, and D. A. Gregory, “Compact joint transform correlator with a thick photorefractive crystal,” Appl. Opt. 31, 2416 (1992).
[CrossRef] [PubMed]

1991 (2)

D. D. Nolte, Q. N. Wang, and M. R. Melloch, “Robust infrared gratings in photorefractive quantum wells generated by an above-band-gap laser,” Appl. Phys. Lett. 58, 2067 (1991).
[CrossRef]

K. Ema, “Real-time ultrashort pulse shaping and pulse shape measurement using a dynamic grating,” Jpn. J. Appl. Phys., Part 2 30, L2046 (1991).
[CrossRef]

1990 (2)

J. E. Millerd, S. D. Koehler, E. M. Garmire, A. Partovi, and A. M. Glass, “Photorefractive gain enhancement using band-edge resonance and temperature stabilization,” Appl. Phys. Lett. 57, 2776 (1990).
[CrossRef]

C. Ozkul, G. Picoli, P. Gravey, and N. Wolffer, “High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields,” Appl. Opt. 29, 2711 (1990).
[CrossRef] [PubMed]

1989 (1)

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

1988 (1)

1987 (1)

1981 (1)

L. Pichon and J. P. Huignard, “Dynamic joint-Fourier-transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277 (1981).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Arizmendi, L.

R. Muller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241 (1994).
[CrossRef]

Athale, R. A.

Bashaw, M.

J. Heanue, M. Bashaw, and L. Hesselink, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[CrossRef] [PubMed]

Brubaker, R. M.

Cabrera, J. M.

R. Muller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241 (1994).
[CrossRef]

Chang, W. S. C.

Cooper, I. R.

Ding, Y.

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718 (1997).
[CrossRef] [PubMed]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge-enhancement of time-domain images,” Opt. Lett. 22, 1101 (1997).
[CrossRef] [PubMed]

Y. Ding and H. J. Eichler, “Crystal orientation dependence of the photorefractive four-wave mixing in compound semiconductors of symmetry group 4¯3m,” Opt. Commun. 110, 456 (1994).
[CrossRef]

H. J. Eichler, Y. Ding, and B. Smandek, “Two-wave mixing in InP:Fe at 1064 nm by linear and quadratic photorefractive effect,” Opt. Commun. 94, 127 (1992).
[CrossRef]

Eichler, H. J.

Y. Ding and H. J. Eichler, “Crystal orientation dependence of the photorefractive four-wave mixing in compound semiconductors of symmetry group 4¯3m,” Opt. Commun. 110, 456 (1994).
[CrossRef]

H. J. Eichler, Y. Ding, and B. Smandek, “Two-wave mixing in InP:Fe at 1064 nm by linear and quadratic photorefractive effect,” Opt. Commun. 94, 127 (1992).
[CrossRef]

Ema, K.

K. Ema, “Real-time ultrashort pulse shaping and pulse shape measurement using a dynamic grating,” Jpn. J. Appl. Phys., Part 2 30, L2046 (1991).
[CrossRef]

Fainman, Y.

Garmire, E. M.

J. E. Millerd, S. D. Koehler, E. M. Garmire, A. Partovi, and A. M. Glass, “Photorefractive gain enhancement using band-edge resonance and temperature stabilization,” Appl. Phys. Lett. 57, 2776 (1990).
[CrossRef]

Glass, A. M.

J. E. Millerd, S. D. Koehler, E. M. Garmire, A. Partovi, and A. M. Glass, “Photorefractive gain enhancement using band-edge resonance and temperature stabilization,” Appl. Phys. Lett. 57, 2776 (1990).
[CrossRef]

Goswami, D.

Gravey, P.

N. Wolffer, P. Gravey, G. Picoli, and V. Vieux, “Double phase conjugated mirror and double color pumped oscillator using band-edge photorefractivity in InP:Fe,” Opt. Commun. 89, 17 (1992).
[CrossRef]

C. Ozkul, G. Picoli, P. Gravey, and N. Wolffer, “High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields,” Appl. Opt. 29, 2711 (1990).
[CrossRef] [PubMed]

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

Gregory, D. A.

Heanue, J.

J. Heanue, M. Bashaw, and L. Hesselink, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[CrossRef] [PubMed]

Heritage, J. P.

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[CrossRef] [PubMed]

J. Heanue, M. Bashaw, and L. Hesselink, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

Hillegas, C.

Huignard, J. P.

L. Pichon and J. P. Huignard, “Dynamic joint-Fourier-transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277 (1981).
[CrossRef]

Kirschner, E. M.

Koehler, S. D.

J. E. Millerd, S. D. Koehler, E. M. Garmire, A. Partovi, and A. M. Glass, “Photorefractive gain enhancement using band-edge resonance and temperature stabilization,” Appl. Phys. Lett. 57, 2776 (1990).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, “Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Mazurenko, Y. T.

McCall, M. W.

Melloch, M. R.

Millerd, J. E.

J. E. Millerd, S. D. Koehler, E. M. Garmire, A. Partovi, and A. M. Glass, “Photorefractive gain enhancement using band-edge resonance and temperature stabilization,” Appl. Phys. Lett. 57, 2776 (1990).
[CrossRef]

Muller, R.

R. Muller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241 (1994).
[CrossRef]

Nicholson, M. G.

Nolte, D. D.

Oba, K.

Ozkul, C.

C. Ozkul, G. Picoli, P. Gravey, and N. Wolffer, “High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields,” Appl. Opt. 29, 2711 (1990).
[CrossRef] [PubMed]

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

Partovi, A.

J. E. Millerd, S. D. Koehler, E. M. Garmire, A. Partovi, and A. M. Glass, “Photorefractive gain enhancement using band-edge resonance and temperature stabilization,” Appl. Phys. Lett. 57, 2776 (1990).
[CrossRef]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, “Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Petts, C. R.

Pichon, L.

L. Pichon and J. P. Huignard, “Dynamic joint-Fourier-transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277 (1981).
[CrossRef]

Picoli, G.

N. Wolffer, P. Gravey, G. Picoli, and V. Vieux, “Double phase conjugated mirror and double color pumped oscillator using band-edge photorefractivity in InP:Fe,” Opt. Commun. 89, 17 (1992).
[CrossRef]

C. Ozkul, G. Picoli, P. Gravey, and N. Wolffer, “High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields,” Appl. Opt. 29, 2711 (1990).
[CrossRef] [PubMed]

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

Raj, K.

Rajan, S.

Santos, M. T.

R. Muller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241 (1994).
[CrossRef]

Smandek, B.

H. J. Eichler, Y. Ding, and B. Smandek, “Two-wave mixing in InP:Fe at 1064 nm by linear and quadratic photorefractive effect,” Opt. Commun. 94, 127 (1992).
[CrossRef]

Strickland, D.

Sun, P. C.

Tull, J. X.

Vieux, V.

N. Wolffer, P. Gravey, G. Picoli, and V. Vieux, “Double phase conjugated mirror and double color pumped oscillator using band-edge photorefractivity in InP:Fe,” Opt. Commun. 89, 17 (1992).
[CrossRef]

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

Wang, Q. N.

D. D. Nolte, Q. N. Wang, and M. R. Melloch, “Robust infrared gratings in photorefractive quantum wells generated by an above-band-gap laser,” Appl. Phys. Lett. 58, 2067 (1991).
[CrossRef]

Warren, W. S.

Weiner, A. M.

Wolffer, N.

N. Wolffer, P. Gravey, G. Picoli, and V. Vieux, “Double phase conjugated mirror and double color pumped oscillator using band-edge photorefractivity in InP:Fe,” Opt. Commun. 89, 17 (1992).
[CrossRef]

C. Ozkul, G. Picoli, P. Gravey, and N. Wolffer, “High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields,” Appl. Opt. 29, 2711 (1990).
[CrossRef] [PubMed]

Wu, S.

Wullert II, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, “Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

Yu, F. T. S.

Yu, P. K. L.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

D. D. Nolte, Q. N. Wang, and M. R. Melloch, “Robust infrared gratings in photorefractive quantum wells generated by an above-band-gap laser,” Appl. Phys. Lett. 58, 2067 (1991).
[CrossRef]

J. E. Millerd, S. D. Koehler, E. M. Garmire, A. Partovi, and A. M. Glass, “Photorefractive gain enhancement using band-edge resonance and temperature stabilization,” Appl. Phys. Lett. 57, 2776 (1990).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, “Programmable shaping of femtosecond optical pulses by use of a 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28, 908 (1992).
[CrossRef]

J. Appl. Phys. (1)

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

R. Muller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241 (1994).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

K. Ema, “Real-time ultrashort pulse shaping and pulse shape measurement using a dynamic grating,” Jpn. J. Appl. Phys., Part 2 30, L2046 (1991).
[CrossRef]

Opt. Commun. (4)

L. Pichon and J. P. Huignard, “Dynamic joint-Fourier-transform correlator by Bragg diffraction in photorefractive Bi12SiO20 crystals,” Opt. Commun. 36, 277 (1981).
[CrossRef]

H. J. Eichler, Y. Ding, and B. Smandek, “Two-wave mixing in InP:Fe at 1064 nm by linear and quadratic photorefractive effect,” Opt. Commun. 94, 127 (1992).
[CrossRef]

N. Wolffer, P. Gravey, G. Picoli, and V. Vieux, “Double phase conjugated mirror and double color pumped oscillator using band-edge photorefractivity in InP:Fe,” Opt. Commun. 89, 17 (1992).
[CrossRef]

Y. Ding and H. J. Eichler, “Crystal orientation dependence of the photorefractive four-wave mixing in compound semiconductors of symmetry group 4¯3m,” Opt. Commun. 110, 456 (1994).
[CrossRef]

Opt. Lett. (6)

Opt. Quantum Electron. (1)

J. Heanue, M. Bashaw, and L. Hesselink, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, S611 (1993).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749 (1994).
[CrossRef] [PubMed]

Other (5)

K. Oba, P. C. Sun, and Y. Fainman, “Nonvolatile photorefractive spectral holography for time domain storage of femtosecond pulses,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 213–214.

P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988, 1989), Vols. 1 and 2.

H. J. Eichler, P. Günter, and D. W. Wohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).

O. J. Glembocki and H. Piller, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), p. 503.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995), p. 65.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for diffraction of femtosecond pulses at 1.5 μm from holograms written in photorefractive crystal at 980 nm with a laser diode (SDL) as the hologram writing source and detection of the diffracted signal at the detector (D).

Fig. 2
Fig. 2

Experimental diffraction spectra from holograms with grating spacings of 4.1 μm and 13.9 μm (solid curves). The theoretical calculations at these grating spacings and the spectra of the incident pulses are shown for comparison.

Fig. 3
Fig. 3

Bandwidth of the diffracted pulse as a function of the grating spacing with crystal lengths of 4, 7.8, and 11 mm. BW, input bandwidth.

Fig. 4
Fig. 4

Output bandwidth as a function of the grating spacing with an infinite input bandwidth (Unlimited Input BW) compared with a 16-nm input bandwidth for a 7.8-mm long crystal, showing large potential bandwidths at large grating spacings for frequency filtering applications.

Fig. 5
Fig. 5

Calculated pulse width (FWHM) and diffraction efficiency as a function of InP crystal thickness for input pulse widths of 400, 150, and 20 fs at 1.5 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

cos θr dEd(z)dz-i K2Δλ4πnr Ed(z)=-iκEr,
Ed(z)=-iEr 8πnrκK2Δλ expi K2Δλ8πnr cos θr z×sinK2Δλ8πnr cos θr z.
η(Δλ)η0=sinc2πΔλd2Λ2nr cos θr.
Δλ1/2=0.886 Λ2nr cos θrd.
n2(λ)=A+Bλ2λ2-C2,
t1=t01+dLD21/2,

Metrics