Abstract

We address the stability of solitary waves to the complex cubic–quintic Ginzburg–Landau equation near the nonlinear Schrödinger limit. It is shown that the adiabatic method does not capture all possible instability mechanisms. The solitary wave can destabilize owing to discrete eigenvalues that move out of the continuous spectrum upon adding nonintegrable perturbations to the nonlinear Schrödinger equation. If an eigenvalue does move out of the continuous spectrum, then we say that an edge bifurcation has occurred. We present a novel analytical technique that allows us to determine whether eigenvalues arise in such a fashion, and if they do, to locate them. Using this approach, we show that Hopf bifurcations can arise in the cubic–quintic Ginzburg–Landau equation.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription