Abstract

Strong polarization changes are observed near the soliton power in a planar waveguide filled with an isotropic material (CS2). Only pure TM and TE modes retain their polarization. The presence of even a small input TE component tends to transform the output polarization into TE polarization. The experimental results are in agreement with coupled-mode theory and facilitate optical switching applications.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201 (1985).
    [CrossRef]
  2. J. S. Aitchison, A. M. Weiner, Y. Silverberg, M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E. Smith, “Observation of spatial solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471 (1990).
    [CrossRef] [PubMed]
  3. S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193 (1988).
    [CrossRef]
  4. D. Wang, R. Barille, and G. Rivoire, “Stokes spectral broadening at an over soliton threshold excitation in a planar waveguide,” J. Opt. Soc. Am. B 15, 181 (1998).
    [CrossRef]
  5. J. S. Aichison, D. C. Hutchings, J. M. Arnold, J. U. Kang, G. I. Stegeman, E. Ostrovskaya, and N. Akhmediev, “Power dependent polarization dynamics of mixed mode spatial solitary waves in AlGaAs waveguides,” J. Opt. Soc. Am. B 14, 3032 (1997).
    [CrossRef]
  6. R. Martijn de Sterke and J. E. Sipe, “Polarization instabilities in a waveguide geometry,” Opt. Lett. 16, 202 (1991).
    [CrossRef] [PubMed]
  7. J. S. Aitchison, J. U. Kang, and G. I. Stegeman, “Signal gain due to polarization coupling in an AlGaAs channel waveguide,” Appl. Phys. Lett. 67, 2456 (1995); J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699 (1996).
    [CrossRef] [PubMed]
  8. J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Soliton propagation in optical devices with two component fields,” J. Opt. Soc. Am. B 12, 1100 (1995).
    [CrossRef]
  9. E. A. Ostrovskaya, N. Akhmediev, G. I. Stegeman, J. U. Kang, and J. S. Aitchinson, “Mixed mode spatial solitons in semiconductor waveguides,” J. Opt. Soc. Am. B 14, 880 (1997).
    [CrossRef]
  10. A. W. Snyder, D. J. Mitchell, and Y. Chen, “Spatial solitons of Maxwell’s equation,” Opt. Lett. 19, 524 (1994).
    [CrossRef] [PubMed]
  11. A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p polarized waves,” Phys. Rev. A 35, 1159 (1987).
    [CrossRef] [PubMed]
  12. A. D. Boardman, Xie, and Zharov, Phys. Rev. A 51, 692 (1995).
    [CrossRef] [PubMed]
  13. Y. Chen and J. Atai, “Solitary waves of Maxwell’s equations in nonlinear anisotropic media,” J. Mod. Opt. 42, 1649 (1995); “Maxwell’s equations and the vector nonlinear Schrödinger equation,” Phys. Rev. E 55, 3652 (1997).
    [CrossRef]
  14. K. Hayata, A. Misawa, and M. Koshiba, “Spatial polarization instabilities due to transverse effects in nonlinear guided wave systems,” J. Opt. Soc. Am. B 7, 1268 (1990).
    [CrossRef]
  15. R. W. Ziolkowski and J. B. Judkins, “Full-wave vector Maxwell equation modeling of the self-focusing of nonlinear Kerr medium exhibiting a finite response time,” J. Opt. Soc. Am. B 10, 186 (1993).
    [CrossRef]
  16. G. Bruhat, Optique (Masson, Paris, 1992).
  17. G. Rivoire, C. Desblancs, J. L. Ferrier, G. Gazengel, and N. Phu Xuan, “Propagation in media with Raman type nonlinearity: polarization states of the waves and gains,” Opt. Quantum Electron. 15, 209 (1983).
    [CrossRef]
  18. S. Huard, Polarisation de la Lumière (Masson, Paris, 1994).
  19. M. Lefkir and G. Rivoire, “Influence of transverse effect on measurement of third-order nonlinear susceptibility by self-induced polarization state changes,” J. Opt. Soc. Am. B 14, 2856 (1997).
    [CrossRef]
  20. A. Van Wonderen, “Influence of transverse effect on self-induced polarization changes in an isotropic Kerr medium,” J. Opt. Soc. Am. B 14, 1118 (1997).
    [CrossRef]
  21. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), p. 260.
  22. J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time resolved transient phase grating,” Opt. Commun. 63, 329 (1987).
    [CrossRef]
  23. W. Kaiser and M. Maier, “Stimulated scatterings,” in Laser Handbook, F. T. Arechi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972).

1998 (1)

1997 (4)

1995 (2)

1994 (1)

1993 (1)

1991 (1)

1990 (2)

1988 (1)

S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193 (1988).
[CrossRef]

1987 (2)

A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p polarized waves,” Phys. Rev. A 35, 1159 (1987).
[CrossRef] [PubMed]

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time resolved transient phase grating,” Opt. Commun. 63, 329 (1987).
[CrossRef]

1985 (1)

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201 (1985).
[CrossRef]

1983 (1)

G. Rivoire, C. Desblancs, J. L. Ferrier, G. Gazengel, and N. Phu Xuan, “Propagation in media with Raman type nonlinearity: polarization states of the waves and gains,” Opt. Quantum Electron. 15, 209 (1983).
[CrossRef]

Aichison, J. S.

Aitchinson, J. S.

Aitchison, J. S.

Akhmediev, N.

Ankiewicz, A.

Arnold, J. M.

Barille, R.

Barthelemy, A.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201 (1985).
[CrossRef]

Boardman, A. D.

A. D. Boardman, Xie, and Zharov, Phys. Rev. A 51, 692 (1995).
[CrossRef] [PubMed]

A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p polarized waves,” Phys. Rev. A 35, 1159 (1987).
[CrossRef] [PubMed]

Chambaret, J. P.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time resolved transient phase grating,” Opt. Commun. 63, 329 (1987).
[CrossRef]

Chen, Y.

de Sterke, R. Martijn

Desailly, R.

S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193 (1988).
[CrossRef]

Desblancs, C.

G. Rivoire, C. Desblancs, J. L. Ferrier, G. Gazengel, and N. Phu Xuan, “Propagation in media with Raman type nonlinearity: polarization states of the waves and gains,” Opt. Quantum Electron. 15, 209 (1983).
[CrossRef]

Etchepare, J.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time resolved transient phase grating,” Opt. Commun. 63, 329 (1987).
[CrossRef]

Ferrier, J. L.

G. Rivoire, C. Desblancs, J. L. Ferrier, G. Gazengel, and N. Phu Xuan, “Propagation in media with Raman type nonlinearity: polarization states of the waves and gains,” Opt. Quantum Electron. 15, 209 (1983).
[CrossRef]

Froehly, C.

S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193 (1988).
[CrossRef]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201 (1985).
[CrossRef]

Gazengel, G.

G. Rivoire, C. Desblancs, J. L. Ferrier, G. Gazengel, and N. Phu Xuan, “Propagation in media with Raman type nonlinearity: polarization states of the waves and gains,” Opt. Quantum Electron. 15, 209 (1983).
[CrossRef]

Grillon, G.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time resolved transient phase grating,” Opt. Commun. 63, 329 (1987).
[CrossRef]

Hamoniaux, G.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time resolved transient phase grating,” Opt. Commun. 63, 329 (1987).
[CrossRef]

Hayata, K.

Hutchings, D. C.

Jackel, J. L.

Judkins, J. B.

Kang, J. U.

Koshiba, M.

Lefkir, M.

Maneuf, S.

S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193 (1988).
[CrossRef]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201 (1985).
[CrossRef]

Maradudin, A. A.

A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p polarized waves,” Phys. Rev. A 35, 1159 (1987).
[CrossRef] [PubMed]

Misawa, A.

Mitchell, D. J.

Oliver, M. K.

Orszag, A.

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time resolved transient phase grating,” Opt. Commun. 63, 329 (1987).
[CrossRef]

Ostrovskaya, E.

Ostrovskaya, E. A.

Phu Xuan, N.

G. Rivoire, C. Desblancs, J. L. Ferrier, G. Gazengel, and N. Phu Xuan, “Propagation in media with Raman type nonlinearity: polarization states of the waves and gains,” Opt. Quantum Electron. 15, 209 (1983).
[CrossRef]

Rivoire, G.

Silverberg, Y.

Sipe, J. E.

Smith, P. W. E.

Snyder, A. W.

Soto-Crespo, J. M.

Stegeman, G. I.

Twardowski, T.

A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p polarized waves,” Phys. Rev. A 35, 1159 (1987).
[CrossRef] [PubMed]

Van Wonderen, A.

Vogel, E. M.

Wang, D.

Weiner, A. M.

Wright, E. M.

A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p polarized waves,” Phys. Rev. A 35, 1159 (1987).
[CrossRef] [PubMed]

Xie,

A. D. Boardman, Xie, and Zharov, Phys. Rev. A 51, 692 (1995).
[CrossRef] [PubMed]

Zharov,

A. D. Boardman, Xie, and Zharov, Phys. Rev. A 51, 692 (1995).
[CrossRef] [PubMed]

Ziolkowski, R. W.

J. Opt. Soc. Am. B (8)

D. Wang, R. Barille, and G. Rivoire, “Stokes spectral broadening at an over soliton threshold excitation in a planar waveguide,” J. Opt. Soc. Am. B 15, 181 (1998).
[CrossRef]

J. S. Aichison, D. C. Hutchings, J. M. Arnold, J. U. Kang, G. I. Stegeman, E. Ostrovskaya, and N. Akhmediev, “Power dependent polarization dynamics of mixed mode spatial solitary waves in AlGaAs waveguides,” J. Opt. Soc. Am. B 14, 3032 (1997).
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Soliton propagation in optical devices with two component fields,” J. Opt. Soc. Am. B 12, 1100 (1995).
[CrossRef]

E. A. Ostrovskaya, N. Akhmediev, G. I. Stegeman, J. U. Kang, and J. S. Aitchinson, “Mixed mode spatial solitons in semiconductor waveguides,” J. Opt. Soc. Am. B 14, 880 (1997).
[CrossRef]

K. Hayata, A. Misawa, and M. Koshiba, “Spatial polarization instabilities due to transverse effects in nonlinear guided wave systems,” J. Opt. Soc. Am. B 7, 1268 (1990).
[CrossRef]

R. W. Ziolkowski and J. B. Judkins, “Full-wave vector Maxwell equation modeling of the self-focusing of nonlinear Kerr medium exhibiting a finite response time,” J. Opt. Soc. Am. B 10, 186 (1993).
[CrossRef]

M. Lefkir and G. Rivoire, “Influence of transverse effect on measurement of third-order nonlinear susceptibility by self-induced polarization state changes,” J. Opt. Soc. Am. B 14, 2856 (1997).
[CrossRef]

A. Van Wonderen, “Influence of transverse effect on self-induced polarization changes in an isotropic Kerr medium,” J. Opt. Soc. Am. B 14, 1118 (1997).
[CrossRef]

Opt. Commun. (3)

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201 (1985).
[CrossRef]

J. Etchepare, G. Grillon, J. P. Chambaret, G. Hamoniaux, and A. Orszag, “Polarization selectivity in time resolved transient phase grating,” Opt. Commun. 63, 329 (1987).
[CrossRef]

S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193 (1988).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

G. Rivoire, C. Desblancs, J. L. Ferrier, G. Gazengel, and N. Phu Xuan, “Propagation in media with Raman type nonlinearity: polarization states of the waves and gains,” Opt. Quantum Electron. 15, 209 (1983).
[CrossRef]

Phys. Rev. A (2)

A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact theory of nonlinear p polarized waves,” Phys. Rev. A 35, 1159 (1987).
[CrossRef] [PubMed]

A. D. Boardman, Xie, and Zharov, Phys. Rev. A 51, 692 (1995).
[CrossRef] [PubMed]

Other (6)

Y. Chen and J. Atai, “Solitary waves of Maxwell’s equations in nonlinear anisotropic media,” J. Mod. Opt. 42, 1649 (1995); “Maxwell’s equations and the vector nonlinear Schrödinger equation,” Phys. Rev. E 55, 3652 (1997).
[CrossRef]

J. S. Aitchison, J. U. Kang, and G. I. Stegeman, “Signal gain due to polarization coupling in an AlGaAs channel waveguide,” Appl. Phys. Lett. 67, 2456 (1995); J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699 (1996).
[CrossRef] [PubMed]

S. Huard, Polarisation de la Lumière (Masson, Paris, 1994).

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), p. 260.

G. Bruhat, Optique (Masson, Paris, 1992).

W. Kaiser and M. Maier, “Stimulated scatterings,” in Laser Handbook, F. T. Arechi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Three-dimensional view of the waveguide with the reference axis: (a) waveguide G, (b) soliton waveguide S with N, where no, ne, and nm, are, respectively, the index of glass, CS2 in the linear range, and CS2 for the TE and the TM modes in the nonlinear range.

Fig. 2
Fig. 2

Soliton power Ps versus ellipticity of the input beam (the input beam’s polarization ellipse has x and y axes).

Fig. 3
Fig. 3

Intensity measurements ITE and ITM of the two output polarization components measured in the center of the beam (x=y=0) as a function of input power P for five values of θ in the interval 0°<10°.

Fig. 4
Fig. 4

Ratios ITM/Is and ITE/Is, where Is is the intensity in the soliton and ITM (asterisks) and ITE (open circles) are, respectively, the intensities of the TM and the TE components, shown as a function of θ.

Fig. 5
Fig. 5

(a) Rotation of the ellipse’s axis and (b) ellipticity variation as a function of the input power for θ=45°.

Fig. 6
Fig. 6

Measurements of output-beam sizes of the TE and the TM components as a function of the input-beam power for five values of θ in the interval 0°<10°.

Fig. 7
Fig. 7

Spectral evolution of the polarization components TE (↔) and TM (↕) as a function of the input-beam power.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

i Ex z+12kx 2Exy2-k2-k2x2k Ex+a|Ex|2Ex
+b|Ey|2Ex+cEyEyEx* exp(-2iΔkz)=0,
i Ey z+12ky 2Eyy2-k2-k2y2k Ey+a|Ey|2Ey
+b|Ex|2Ey+cEx Ex Ey* exp(+2iΔkz)=0,
E(z)=[Ex0x exp(iΔk z)+Ey0y] 1(|Ex0|2+|Ey0|2)1/2,
R=1-Δk2kq1+Δk2kq1/2,
Ix=I01+Iy0Ix0 exp(gl2I0)=I0-Iy,
Ve tan(Ve)=We,Ve=d(n2k02-ke2)1/2,
We=d(ke2-N2k02)1/2,
Vm tan(Vm)=Wm,Vm=d(n2k02-km2),
Wm=d(km2-N2k02),
Δ k0=(km-ke)0=-π24 n2-N2k02d3n3<0.
Δkp=(km-ke)p=-4(n-N)n2k03d2<0.
tan Φ=e1-e2 1+tan2 αtan α.
Ix z=4cΔkzpIx Iy=-Iyz,
Ix=I0 Ix0Ix0+Iy0 exp( gl2I0),
exp( gl2I0)1.
Ix=I0 I01+θ2 exp(gl2I0).

Metrics