Abstract

The microscopic properties of azobenzene chromophores are important for a correct description of optical storage systems based on photoinduced anisotropy in azobenzene polymers. A quantum model of these properties is presented and verified by comparison to experimental absorption spectra for trans and cis isomers of cyano methoxy azobenzene. In addition, the transcis quantum efficiency is measured, and hence the combined experimental and theoretical work allows one to determine the essential molecular properties, including magnitude and anisotropy of the absorption cross section and various components of the polarizability tensor for both trans and cis isomers. It is shown that the trans isomer is almost perfectly anisotropic, whereas the cis isomer is approximately isotropic in the plane containing the central CN=NC azobridge. The implications for models of the storage mechanism are discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rau, “Azo compounds,” in Photochromism Molecules and Systems, H. Dürr and H. Bouas-Laurent, eds. (Elsevier, Amsterdam, 1990).
  2. M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. 8, 59 (1987).
  3. M. Eich and J. H. Wendorff, “Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers,” J. Opt. Soc. Am. B 7, 1428 (1990).
    [CrossRef]
  4. K. D. Singer, J. E. Sohn, L. A. King, H. M. Gordon, H. E. Katz, and C. W. Dirk, “Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds,” J. Opt. Soc. Am. B 6, 1339 (1989).
    [CrossRef]
  5. Y. Shuto, “Quadratic hyperpolarizabilities of nitro-substituted pseudo-linear dye molecules with ethylenic and azo bridges,” Int. J. Quantum Chem. 58, 407 (1996).
    [CrossRef]
  6. J. O. Morley, “Theoretical investigation of the electronic properties of donor-acceptor N-benzylideneanilines and related molecules,” J. Chem. Soc., 731 (1995).
  7. J. O. Morley, “Calculation of the electronic structure and nonlinear optical properties of three blue dyes,” J. Mol. Struct. 362, 235 (1996).
    [CrossRef]
  8. R. Pariser and R. Parr, “A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. II,” J. Chem. Phys. 21, 466 (1953).
    [CrossRef]
  9. J. A. Pople, “Electronic interaction in unsaturated hydrocarbons,” Trans. Faraday Soc. 49, 1375 (1953).
    [CrossRef]
  10. J. A. Pople, “The electronic spectra of aromatic molecules. II,” Proc. Phys. Soc. London, Sec. A 68, 81 (1955).
    [CrossRef]
  11. S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172 (1995).
    [CrossRef]
  12. T. G. Pedersen and P. M. Johansen, “Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers,” Phys. Rev. Lett. 79, 2470 (1997).
    [CrossRef]
  13. T. G. Pedersen, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyesters,” J. Opt. Soc. Am. B 15, 1120 (1998).
    [CrossRef]
  14. N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Photoinduced anisotropy measurements in liquid-crystalline side-chain polyesters,” Appl. Opt. 35, 4622 (1996).
    [CrossRef] [PubMed]
  15. D. L. Beveridge and H. H. Jaffé, “The electronic structure and spectra of cis- and trans-azobenzene,” J. Am. Chem. Soc. 88, 1948 (1966).
    [CrossRef]
  16. M. Traetteberg, I. Hilmo, and K. Hagen, “A gas electron diffraction study of the molecular structure of trans-azobenzene,” J. Mol. Struct. 39, 231 (1977).
    [CrossRef]
  17. S. Monti, G. Orlandi, and P. Palmeri, “Features of the photochemically active state surfaces of azobenzene,” Chem. Phys. 71, 87 (1982).
    [CrossRef]
  18. J. Griffiths, “Practical properties of colour prediction of organic dye molecules,” Dyes Pigm. 3, 211 (1982).
    [CrossRef]
  19. L. Salem, The Molecular Orbital Theory of Conjugated Systems (Benjamin, New York, 1966).
  20. M. Weissbluth, Photon-Atom Interactions (Academic, San Diego, Calif., 1989).
  21. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  22. D. Grasso, S. Millefiori, and S. Fasone, “Solvent effect on the absorption spectra of substituted azobenzenes,” Spectrochim. Acta A 31, 187 (1975).
    [CrossRef]
  23. G. Zimmerman, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
    [CrossRef]
  24. E. Fischer, “The calculation of photostationary states in systems A↔B when only A is known,” J. Phys. Chem. 71, 3704 (1967).
    [CrossRef]
  25. I. K. Lednev, T. Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV–visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338 (1996).
    [CrossRef]
  26. Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993).
    [CrossRef]
  27. M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327 (1995).
  28. P. S. Ramanujam, S. Hvilsted, I. Zebger, and H. W. Siesler, “On the explanation of the biphotonic processes in polyesters containing azobenzene in the side chain,” Macromol. Rapid Commun. 16, 455 (1995).
    [CrossRef]
  29. K. Ohno, “Some remarks on the Pariser–Parr–Pople method,” Theor. Chim. Acta 2, 219 (1964).
    [CrossRef]
  30. I. D. L. Albert, S. Ramasesha, and P. K. Das, “Properties of some low-lying electronic states in polymethineimines and poly(2, 3-diazabutadienes),” Phys. Rev. B 43, 7013 (1991).
    [CrossRef]
  31. A. Takahashi and S. Mukamel, “Anharmonic oscillator modelling of nonlinear susceptibilities and its applications to conjugated polymers,” J. Chem. Phys. 100, 2366 (1994).
    [CrossRef]

1998 (1)

1997 (1)

T. G. Pedersen and P. M. Johansen, “Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers,” Phys. Rev. Lett. 79, 2470 (1997).
[CrossRef]

1996 (4)

Y. Shuto, “Quadratic hyperpolarizabilities of nitro-substituted pseudo-linear dye molecules with ethylenic and azo bridges,” Int. J. Quantum Chem. 58, 407 (1996).
[CrossRef]

J. O. Morley, “Calculation of the electronic structure and nonlinear optical properties of three blue dyes,” J. Mol. Struct. 362, 235 (1996).
[CrossRef]

I. K. Lednev, T. Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV–visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338 (1996).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Photoinduced anisotropy measurements in liquid-crystalline side-chain polyesters,” Appl. Opt. 35, 4622 (1996).
[CrossRef] [PubMed]

1995 (3)

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327 (1995).

P. S. Ramanujam, S. Hvilsted, I. Zebger, and H. W. Siesler, “On the explanation of the biphotonic processes in polyesters containing azobenzene in the side chain,” Macromol. Rapid Commun. 16, 455 (1995).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172 (1995).
[CrossRef]

1994 (1)

A. Takahashi and S. Mukamel, “Anharmonic oscillator modelling of nonlinear susceptibilities and its applications to conjugated polymers,” J. Chem. Phys. 100, 2366 (1994).
[CrossRef]

1993 (1)

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993).
[CrossRef]

1991 (1)

I. D. L. Albert, S. Ramasesha, and P. K. Das, “Properties of some low-lying electronic states in polymethineimines and poly(2, 3-diazabutadienes),” Phys. Rev. B 43, 7013 (1991).
[CrossRef]

1990 (1)

1989 (1)

1987 (1)

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. 8, 59 (1987).

1982 (2)

S. Monti, G. Orlandi, and P. Palmeri, “Features of the photochemically active state surfaces of azobenzene,” Chem. Phys. 71, 87 (1982).
[CrossRef]

J. Griffiths, “Practical properties of colour prediction of organic dye molecules,” Dyes Pigm. 3, 211 (1982).
[CrossRef]

1977 (1)

M. Traetteberg, I. Hilmo, and K. Hagen, “A gas electron diffraction study of the molecular structure of trans-azobenzene,” J. Mol. Struct. 39, 231 (1977).
[CrossRef]

1975 (1)

D. Grasso, S. Millefiori, and S. Fasone, “Solvent effect on the absorption spectra of substituted azobenzenes,” Spectrochim. Acta A 31, 187 (1975).
[CrossRef]

1967 (1)

E. Fischer, “The calculation of photostationary states in systems A↔B when only A is known,” J. Phys. Chem. 71, 3704 (1967).
[CrossRef]

1966 (1)

D. L. Beveridge and H. H. Jaffé, “The electronic structure and spectra of cis- and trans-azobenzene,” J. Am. Chem. Soc. 88, 1948 (1966).
[CrossRef]

1964 (1)

K. Ohno, “Some remarks on the Pariser–Parr–Pople method,” Theor. Chim. Acta 2, 219 (1964).
[CrossRef]

1958 (1)

G. Zimmerman, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
[CrossRef]

1955 (1)

J. A. Pople, “The electronic spectra of aromatic molecules. II,” Proc. Phys. Soc. London, Sec. A 68, 81 (1955).
[CrossRef]

1953 (2)

R. Pariser and R. Parr, “A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. II,” J. Chem. Phys. 21, 466 (1953).
[CrossRef]

J. A. Pople, “Electronic interaction in unsaturated hydrocarbons,” Trans. Faraday Soc. 49, 1375 (1953).
[CrossRef]

Albert, I. D. L.

I. D. L. Albert, S. Ramasesha, and P. K. Das, “Properties of some low-lying electronic states in polymethineimines and poly(2, 3-diazabutadienes),” Phys. Rev. B 43, 7013 (1991).
[CrossRef]

Andruzzi, F.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172 (1995).
[CrossRef]

Beveridge, D. L.

D. L. Beveridge and H. H. Jaffé, “The electronic structure and spectra of cis- and trans-azobenzene,” J. Am. Chem. Soc. 88, 1948 (1966).
[CrossRef]

Chow, L.

G. Zimmerman, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
[CrossRef]

Das, P. K.

I. D. L. Albert, S. Ramasesha, and P. K. Das, “Properties of some low-lying electronic states in polymethineimines and poly(2, 3-diazabutadienes),” Phys. Rev. B 43, 7013 (1991).
[CrossRef]

Dirk, C. W.

Dumont, M.

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327 (1995).

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993).
[CrossRef]

Eich, M.

M. Eich and J. H. Wendorff, “Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers,” J. Opt. Soc. Am. B 7, 1428 (1990).
[CrossRef]

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. 8, 59 (1987).

Fasone, S.

D. Grasso, S. Millefiori, and S. Fasone, “Solvent effect on the absorption spectra of substituted azobenzenes,” Spectrochim. Acta A 31, 187 (1975).
[CrossRef]

Fischer, E.

E. Fischer, “The calculation of photostationary states in systems A↔B when only A is known,” J. Phys. Chem. 71, 3704 (1967).
[CrossRef]

Froc, G.

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327 (1995).

Gordon, H. M.

Grasso, D.

D. Grasso, S. Millefiori, and S. Fasone, “Solvent effect on the absorption spectra of substituted azobenzenes,” Spectrochim. Acta A 31, 187 (1975).
[CrossRef]

Griffiths, J.

J. Griffiths, “Practical properties of colour prediction of organic dye molecules,” Dyes Pigm. 3, 211 (1982).
[CrossRef]

Hagen, K.

M. Traetteberg, I. Hilmo, and K. Hagen, “A gas electron diffraction study of the molecular structure of trans-azobenzene,” J. Mol. Struct. 39, 231 (1977).
[CrossRef]

Hester, R. E.

I. K. Lednev, T. Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV–visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338 (1996).
[CrossRef]

Hilmo, I.

M. Traetteberg, I. Hilmo, and K. Hagen, “A gas electron diffraction study of the molecular structure of trans-azobenzene,” J. Mol. Struct. 39, 231 (1977).
[CrossRef]

Holme, N. C. R.

Hosotte, S.

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327 (1995).

Hvilsted, S.

T. G. Pedersen, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyesters,” J. Opt. Soc. Am. B 15, 1120 (1998).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Photoinduced anisotropy measurements in liquid-crystalline side-chain polyesters,” Appl. Opt. 35, 4622 (1996).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172 (1995).
[CrossRef]

P. S. Ramanujam, S. Hvilsted, I. Zebger, and H. W. Siesler, “On the explanation of the biphotonic processes in polyesters containing azobenzene in the side chain,” Macromol. Rapid Commun. 16, 455 (1995).
[CrossRef]

Jaffé, H. H.

D. L. Beveridge and H. H. Jaffé, “The electronic structure and spectra of cis- and trans-azobenzene,” J. Am. Chem. Soc. 88, 1948 (1966).
[CrossRef]

Johansen, P. M.

T. G. Pedersen, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyesters,” J. Opt. Soc. Am. B 15, 1120 (1998).
[CrossRef]

T. G. Pedersen and P. M. Johansen, “Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers,” Phys. Rev. Lett. 79, 2470 (1997).
[CrossRef]

Katz, H. E.

King, L. A.

Kulinna, C.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172 (1995).
[CrossRef]

Lednev, I. K.

I. K. Lednev, T. Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV–visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338 (1996).
[CrossRef]

Millefiori, S.

D. Grasso, S. Millefiori, and S. Fasone, “Solvent effect on the absorption spectra of substituted azobenzenes,” Spectrochim. Acta A 31, 187 (1975).
[CrossRef]

Monti, S.

S. Monti, G. Orlandi, and P. Palmeri, “Features of the photochemically active state surfaces of azobenzene,” Chem. Phys. 71, 87 (1982).
[CrossRef]

Moore, J. N.

I. K. Lednev, T. Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV–visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338 (1996).
[CrossRef]

Morley, J. O.

J. O. Morley, “Calculation of the electronic structure and nonlinear optical properties of three blue dyes,” J. Mol. Struct. 362, 235 (1996).
[CrossRef]

Mukamel, S.

A. Takahashi and S. Mukamel, “Anharmonic oscillator modelling of nonlinear susceptibilities and its applications to conjugated polymers,” J. Chem. Phys. 100, 2366 (1994).
[CrossRef]

Ohno, K.

K. Ohno, “Some remarks on the Pariser–Parr–Pople method,” Theor. Chim. Acta 2, 219 (1964).
[CrossRef]

Orlandi, G.

S. Monti, G. Orlandi, and P. Palmeri, “Features of the photochemically active state surfaces of azobenzene,” Chem. Phys. 71, 87 (1982).
[CrossRef]

Paik, U.

G. Zimmerman, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
[CrossRef]

Palmeri, P.

S. Monti, G. Orlandi, and P. Palmeri, “Features of the photochemically active state surfaces of azobenzene,” Chem. Phys. 71, 87 (1982).
[CrossRef]

Pariser, R.

R. Pariser and R. Parr, “A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. II,” J. Chem. Phys. 21, 466 (1953).
[CrossRef]

Parr, R.

R. Pariser and R. Parr, “A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. II,” J. Chem. Phys. 21, 466 (1953).
[CrossRef]

Pedersen, T. G.

T. G. Pedersen, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyesters,” J. Opt. Soc. Am. B 15, 1120 (1998).
[CrossRef]

T. G. Pedersen and P. M. Johansen, “Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers,” Phys. Rev. Lett. 79, 2470 (1997).
[CrossRef]

Pople, J. A.

J. A. Pople, “The electronic spectra of aromatic molecules. II,” Proc. Phys. Soc. London, Sec. A 68, 81 (1955).
[CrossRef]

J. A. Pople, “Electronic interaction in unsaturated hydrocarbons,” Trans. Faraday Soc. 49, 1375 (1953).
[CrossRef]

Ramanujam, P. S.

T. G. Pedersen, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyesters,” J. Opt. Soc. Am. B 15, 1120 (1998).
[CrossRef]

N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Photoinduced anisotropy measurements in liquid-crystalline side-chain polyesters,” Appl. Opt. 35, 4622 (1996).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172 (1995).
[CrossRef]

P. S. Ramanujam, S. Hvilsted, I. Zebger, and H. W. Siesler, “On the explanation of the biphotonic processes in polyesters containing azobenzene in the side chain,” Macromol. Rapid Commun. 16, 455 (1995).
[CrossRef]

Ramasesha, S.

I. D. L. Albert, S. Ramasesha, and P. K. Das, “Properties of some low-lying electronic states in polymethineimines and poly(2, 3-diazabutadienes),” Phys. Rev. B 43, 7013 (1991).
[CrossRef]

Reck, B.

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. 8, 59 (1987).

Ringsdorf, H.

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. 8, 59 (1987).

Sekkat, Z.

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993).
[CrossRef]

Shuto, Y.

Y. Shuto, “Quadratic hyperpolarizabilities of nitro-substituted pseudo-linear dye molecules with ethylenic and azo bridges,” Int. J. Quantum Chem. 58, 407 (1996).
[CrossRef]

Siesler, H. W.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172 (1995).
[CrossRef]

P. S. Ramanujam, S. Hvilsted, I. Zebger, and H. W. Siesler, “On the explanation of the biphotonic processes in polyesters containing azobenzene in the side chain,” Macromol. Rapid Commun. 16, 455 (1995).
[CrossRef]

Singer, K. D.

Sohn, J. E.

Takahashi, A.

A. Takahashi and S. Mukamel, “Anharmonic oscillator modelling of nonlinear susceptibilities and its applications to conjugated polymers,” J. Chem. Phys. 100, 2366 (1994).
[CrossRef]

Traetteberg, M.

M. Traetteberg, I. Hilmo, and K. Hagen, “A gas electron diffraction study of the molecular structure of trans-azobenzene,” J. Mol. Struct. 39, 231 (1977).
[CrossRef]

Wendorff, J. H.

M. Eich and J. H. Wendorff, “Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers,” J. Opt. Soc. Am. B 7, 1428 (1990).
[CrossRef]

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. 8, 59 (1987).

Ye, T. Q.

I. K. Lednev, T. Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV–visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338 (1996).
[CrossRef]

Zebger, I.

P. S. Ramanujam, S. Hvilsted, I. Zebger, and H. W. Siesler, “On the explanation of the biphotonic processes in polyesters containing azobenzene in the side chain,” Macromol. Rapid Commun. 16, 455 (1995).
[CrossRef]

Zimmerman, G.

G. Zimmerman, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
[CrossRef]

Appl. Opt. (1)

Chem. Phys. (1)

S. Monti, G. Orlandi, and P. Palmeri, “Features of the photochemically active state surfaces of azobenzene,” Chem. Phys. 71, 87 (1982).
[CrossRef]

Dyes Pigm. (1)

J. Griffiths, “Practical properties of colour prediction of organic dye molecules,” Dyes Pigm. 3, 211 (1982).
[CrossRef]

Int. J. Quantum Chem. (1)

Y. Shuto, “Quadratic hyperpolarizabilities of nitro-substituted pseudo-linear dye molecules with ethylenic and azo bridges,” Int. J. Quantum Chem. 58, 407 (1996).
[CrossRef]

J. Am. Chem. Soc. (2)

G. Zimmerman, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
[CrossRef]

D. L. Beveridge and H. H. Jaffé, “The electronic structure and spectra of cis- and trans-azobenzene,” J. Am. Chem. Soc. 88, 1948 (1966).
[CrossRef]

J. Chem. Phys. (2)

A. Takahashi and S. Mukamel, “Anharmonic oscillator modelling of nonlinear susceptibilities and its applications to conjugated polymers,” J. Chem. Phys. 100, 2366 (1994).
[CrossRef]

R. Pariser and R. Parr, “A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. II,” J. Chem. Phys. 21, 466 (1953).
[CrossRef]

J. Mol. Struct. (2)

J. O. Morley, “Calculation of the electronic structure and nonlinear optical properties of three blue dyes,” J. Mol. Struct. 362, 235 (1996).
[CrossRef]

M. Traetteberg, I. Hilmo, and K. Hagen, “A gas electron diffraction study of the molecular structure of trans-azobenzene,” J. Mol. Struct. 39, 231 (1977).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. (2)

E. Fischer, “The calculation of photostationary states in systems A↔B when only A is known,” J. Phys. Chem. 71, 3704 (1967).
[CrossRef]

I. K. Lednev, T. Q. Ye, R. E. Hester, and J. N. Moore, “Femtosecond time-resolved UV–visible absorption spectroscopy of trans-azobenzene in solution,” J. Phys. Chem. 100, 13338 (1996).
[CrossRef]

Macromol. Rapid Commun. (1)

P. S. Ramanujam, S. Hvilsted, I. Zebger, and H. W. Siesler, “On the explanation of the biphotonic processes in polyesters containing azobenzene in the side chain,” Macromol. Rapid Commun. 16, 455 (1995).
[CrossRef]

Macromolecules (1)

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172 (1995).
[CrossRef]

Makromol. Chem. (1)

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” Makromol. Chem. 8, 59 (1987).

Nonlinear Opt. (1)

M. Dumont, G. Froc, and S. Hosotte, “Alignment and orientation of chromophores by optical pumping,” Nonlinear Opt. 9, 327 (1995).

Phys. Rev. B (1)

I. D. L. Albert, S. Ramasesha, and P. K. Das, “Properties of some low-lying electronic states in polymethineimines and poly(2, 3-diazabutadienes),” Phys. Rev. B 43, 7013 (1991).
[CrossRef]

Phys. Rev. Lett. (1)

T. G. Pedersen and P. M. Johansen, “Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers,” Phys. Rev. Lett. 79, 2470 (1997).
[CrossRef]

Proc. Phys. Soc. London, Sec. A (1)

J. A. Pople, “The electronic spectra of aromatic molecules. II,” Proc. Phys. Soc. London, Sec. A 68, 81 (1955).
[CrossRef]

Spectrochim. Acta A (1)

D. Grasso, S. Millefiori, and S. Fasone, “Solvent effect on the absorption spectra of substituted azobenzenes,” Spectrochim. Acta A 31, 187 (1975).
[CrossRef]

Synth. Met. (1)

Z. Sekkat and M. Dumont, “Photoinduced orientation of azo dyes in polymeric films. Characterization of molecular angular mobility,” Synth. Met. 54, 373 (1993).
[CrossRef]

Theor. Chim. Acta (1)

K. Ohno, “Some remarks on the Pariser–Parr–Pople method,” Theor. Chim. Acta 2, 219 (1964).
[CrossRef]

Trans. Faraday Soc. (1)

J. A. Pople, “Electronic interaction in unsaturated hydrocarbons,” Trans. Faraday Soc. 49, 1375 (1953).
[CrossRef]

Other (5)

J. O. Morley, “Theoretical investigation of the electronic properties of donor-acceptor N-benzylideneanilines and related molecules,” J. Chem. Soc., 731 (1995).

H. Rau, “Azo compounds,” in Photochromism Molecules and Systems, H. Dürr and H. Bouas-Laurent, eds. (Elsevier, Amsterdam, 1990).

L. Salem, The Molecular Orbital Theory of Conjugated Systems (Benjamin, New York, 1966).

M. Weissbluth, Photon-Atom Interactions (Academic, San Diego, Calif., 1989).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Repeating unit of the azobenzene side-chain polyester P6a12.

Fig. 2
Fig. 2

Geometries of (a) trans and (b) cis isomers of cyano methoxy azobenzene.

Fig. 3
Fig. 3

Experimental absorbance spectra of a solution of P6a12 in chloroform before and after illumination (30 min.) by the 363-nm line of an argon-ion laser.

Fig. 4
Fig. 4

Calculated quantum efficiencies as a function of the steady-state cis fraction produced by UV pumping. The curves are obtained by fitting the measured time dependence of the absorbance probed at 390 nm to the theoretical expression. The inset shows experimental data (squares) and the best fit of the theoretical expression (solid curve) assuming a cis fraction of 0.87.

Fig. 5
Fig. 5

Comparison between the experimental (solid curve) and theoretical (dashed curve) absorption cross section for the trans isomer of CM azobenzene. The dotted curve shows the theoretical curve obtained by a suitable scaling of the calculated oscillator strength of the fundamental ππ* transition.

Fig. 6
Fig. 6

Comparison between the experimental (solid curve) and calculated (dashed curve) absorption cross section for the cis isomer of CM azobenzene. The experimental curve is obtained assuming that a cis fraction of 0.87 is produced by UV pumping of the polymer solution.

Fig. 7
Fig. 7

Calculated anisotropy of the absorption cross section of the trans isomer of CM azobenzene. Notice that the Cartesian component along the x axis (the molecular long axis) is entirely dominating above ∼300 nm.

Fig. 8
Fig. 8

Theoretical wavelength dependence of the Cartesian components of the cis absorption cross section. Note the almost exact equality between σx and σy around 488 nm.

Fig. 9
Fig. 9

Calculated components of the trans polarizability tensor as a function of wavelength.

Fig. 10
Fig. 10

Calculated components of the cis polarizability tensor as a function of wavelength. It is seen that in the long-wavelength range the xx and yy components are of the same order of magnitude, in agreement with the calculated absorption anisotropy.

Tables (4)

Tables Icon

Table 1 Lowest Singlet (S) and Triplet (T) Transitions of trans CM Azobenzene

Tables Icon

Table 2 Same as Table 1, but for the cis Isomer

Tables Icon

Table 3 Key Values of the Molecular Absorption Cross Section (σ) and Polarizability (α) for Recording and Readout Wavelengths of 488 nm and 633 nm, Respectively

Tables Icon

Table 4 Pariser–Parr–Pople Parameters (Taken from Ref. 18) Used in the Calculation of Molecular π Orbitals

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

|ψk=μ=117cμk|πμ,
βπCπN(τ)=βπCπN(0) cos(τ),
βπn(τ)=βπn(0) sin(τ).
|φ±(0)=(1/2)(|n7±|n8),
|χ0=111! |ψ1ψ¯1ψ9ψ¯9φ+φ¯+φ-φ¯-|,
|χ+m=1211! {|ψ1ψ¯1ψ9ψ¯9ψmφ¯+φ-φ¯-|+|ψ1ψ¯1ψ9ψ¯9φ+ψ¯mφ-φ¯-|},
E±mEm-E±-(φ±φ±|ψmψm),
χ0|r|χ+m=2ψm|r|φ±.
(φ±φ±|ψmψm)=12 {(c7m)2+(c8m)2}γπn,
γπn=[nμ(1)]2×1|r(1)-r(2)| [πμ(2)]2dV(1)dV(2).
|φ±=|φ±(0)+nm ψn|Hπn|φ±(0)E±(0)-En |ψn,
E±=E±(0)+nm |ψn|Hπn|φ±(0)|2E±(0)-En,
|φ±=|φ±(0)+12 βπn(τ)nm c6n±c9nE±(0)-En |ψn,
E±=E±(0)+12 [βπn(τ)]2nm (c6n±c9n)2E±(0)-En.
χ0|r|χ+m=βπn(τ)nm c6n±c9nE±(0)-En μcμmcμnrμ.
fnm(x)=2meωnm3 |χ0|x|χnm|2,
fN(x)=2meωN3 n,mAnm(N)χ0|x|χnm2,
σi(λ)=3μ0e24n(λ)me NfN(i)λN2gN(λ),
gN(λ)=1ΓNπ exp-λ-λNΓN2,
σˆ(λ)=13[σx(λ)+σy(λ)+σz(λ)].
αii(λ)=-n2(λ)+23 3e2me(2πc)2 NfN(i)λN2hN(λ),
hN(λ)=1-λNπ2ΓN ΦIλN-λΓNexp-λN-λΓN2-λNπ2ΓN ΦIλN+λΓNexp-λN+λΓN2,
ACT(λ)=AMixed(λ)+(C-1)ATC(λ)C,
dC(t)dt=I0 c2πλσTC(λ)ϕTCF(t)1-C(t)C,
F(t)=1-10-A(λ, t)ln(10)A(λ, t),
C=ATCϕTCATCϕTC+ACTϕCT.
A(λ, t)=ATC(λ)[1-C(t)]+ACT(λ)C(t).
σ^TC(λ)=ln(10)Nd ATC(λ),
ΔαTC(633nm)=53×10-36 Fcm2,
ΔαCT(633nm)=9×10-36 Fcm2.
Hμμ=Uμμ+12 Pμμγμμ+νμ(Pνν-Zν)γμν,
Hμν=βμν-12 Pμνγμν(μν).
γμν=14.39728.7942/(γμμ+γνν)2+rμν2,
rμν=rμν(0)+2βK Pμν,

Metrics