Abstract

Persistent spectral hole burning has been observed above 77 K for the 5D07F0 transition of Eu3+ in various silicate glasses melted in a nitrogen atmosphere. A striking and novel feature is that the persistent hole can be burned at room temperature. The spectral hole are undiminished in intensity for 2 h in the dark. The formation of a hole with high thermal stability is accomplished only by a change in the melting atmosphere. At 77 K the efficiency of the hole burning is greater for sodium silicate glasses than for sodium aluminosilicate glasses. A possible hole-burning mechanism, i.e., photoinduced reduction of Eu3+, is suggested.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Macfarlane and R. M. Shelby, in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), Vol. 21, p. 51.
  2. R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole Burning: Science and Application, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.
  3. M. Mitsunaga, N. Uesugi, H. Sasaki, and K. Karaki, “Holographic motion picture by Eu3+:Y2SiO5,” Opt. Lett. 19, 752 (1994).
    [CrossRef] [PubMed]
  4. M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D07F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
    [CrossRef]
  5. R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
    [CrossRef]
  6. K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
    [CrossRef]
  7. K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
    [CrossRef] [PubMed]
  8. A. Kurita, T. Kushida, T. Izumitani, and M. Matsukawa, “Persistent spectral hole burning in Sm2+-doped fluoride glasses,” Opt. Lett. 19, 314 (1994).
    [CrossRef] [PubMed]
  9. M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
    [CrossRef]
  10. H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
    [CrossRef]
  11. Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
    [CrossRef]
  12. M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
    [CrossRef]
  13. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
    [CrossRef]
  14. R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
    [CrossRef]
  15. Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
    [CrossRef]
  16. R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
    [CrossRef]
  17. K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
    [CrossRef]
  18. K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
    [CrossRef]
  19. K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
    [CrossRef]
  20. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
    [CrossRef]
  21. K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
    [CrossRef]
  22. M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
    [CrossRef]
  23. P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
    [CrossRef]
  24. K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
    [CrossRef]
  25. A. Winnacker, R. M. Shelby, and R. M. Macfarlane, “Photon-gated hole burning: a new mechanism using two-step photoionization,” Opt. Lett. 10, 350 (1985).
    [CrossRef] [PubMed]
  26. D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
    [CrossRef]
  27. Y. Yamada and S. Ohno, “Photoreduction of solid europium chloride in KBr by visible two-photon excitation,” Chem. Lett. 465 (1991).
  28. S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
    [CrossRef]
  29. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
    [CrossRef]

1998 (4)

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
[CrossRef]

1997 (4)

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
[CrossRef]

1996 (3)

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

1995 (2)

M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D07F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

1994 (4)

Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
[CrossRef]

R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
[CrossRef]

A. Kurita, T. Kushida, T. Izumitani, and M. Matsukawa, “Persistent spectral hole burning in Sm2+-doped fluoride glasses,” Opt. Lett. 19, 314 (1994).
[CrossRef] [PubMed]

M. Mitsunaga, N. Uesugi, H. Sasaki, and K. Karaki, “Holographic motion picture by Eu3+:Y2SiO5,” Opt. Lett. 19, 752 (1994).
[CrossRef] [PubMed]

1993 (4)

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
[CrossRef]

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
[CrossRef]

1991 (1)

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
[CrossRef]

1990 (1)

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

1987 (1)

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

1985 (1)

1983 (1)

R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
[CrossRef]

Abe, Y.

M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

Bill, H.

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
[CrossRef]

Boey, D. M.

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Bruce, A.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Cho, D. H.

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

Fujita, K.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

Gavrilovic, P.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Grodkiewicz, W. H.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Hirao, K.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
[CrossRef]

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
[CrossRef]

Ishigame, M.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Izumitani, T.

Jaaniso, R.

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
[CrossRef]

Karaki, K.

Koedijk, J. M. A.

R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
[CrossRef]

Kurita, A.

Kushida, T.

M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D07F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
[CrossRef]

A. Kurita, T. Kushida, T. Izumitani, and M. Matsukawa, “Persistent spectral hole burning in Sm2+-doped fluoride glasses,” Opt. Lett. 19, 314 (1994).
[CrossRef] [PubMed]

Macfarlane, R. M.

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
[CrossRef]

A. Winnacker, R. M. Shelby, and R. M. Macfarlane, “Photon-gated hole burning: a new mechanism using two-step photoionization,” Opt. Lett. 10, 350 (1985).
[CrossRef] [PubMed]

R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
[CrossRef]

Mao, Y.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Matsukawa, M.

Matsuo, S.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Matsuoka, N.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

Meltzer, R. S.

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Mitsunaga, M.

Morsen, E.

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

Mosel, B. D.

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

Muller-Warmuth, W.

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

Nogami, M.

M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

Ohyagi, T.

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

Qiu, J.

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

Sasaki, H.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

M. Mitsunaga, N. Uesugi, H. Sasaki, and K. Karaki, “Holographic motion picture by Eu3+:Y2SiO5,” Opt. Lett. 19, 752 (1994).
[CrossRef] [PubMed]

Schmidt, Th.

Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
[CrossRef]

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

Schokker, B. C.

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

Shelby, R. M.

A. Winnacker, R. M. Shelby, and R. M. Macfarlane, “Photon-gated hole burning: a new mechanism using two-step photoionization,” Opt. Lett. 10, 350 (1985).
[CrossRef] [PubMed]

R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
[CrossRef]

Singh, S.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Soga, N.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
[CrossRef]

Sun, Y.

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Tanaka, K.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

Tanaka, M.

M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D07F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
[CrossRef]

Todoroki, S.

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
[CrossRef]

Uesugi, N.

van der Zaag, P. J.

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

Völker, S.

R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
[CrossRef]

Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
[CrossRef]

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

Wannemacher, R.

R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
[CrossRef]

Winnacker, A.

Winterer, M.

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

Yagi, R.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Yugami, H.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

Europhys. Lett. (1)

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
[CrossRef]

J. Am. Ceram. Soc. (1)

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

J. Appl. Phys. (3)

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
[CrossRef]

J. Lumin. (3)

R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
[CrossRef]

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
[CrossRef]

J. Mater. Res. (1)

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

J. Phys. C (1)

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

Opt. Commun. (1)

R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. B (4)

Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
[CrossRef]

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D07F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
[CrossRef]

Other (3)

Y. Yamada and S. Ohno, “Photoreduction of solid europium chloride in KBr by visible two-photon excitation,” Chem. Lett. 465 (1991).

R. M. Macfarlane and R. M. Shelby, in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), Vol. 21, p. 51.

R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole Burning: Science and Application, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Fluorescence spectrum at 12 K for SN14 glass melted in a nitrogen atmosphere. The excitation wavelength is 465 nm. (b) Excitation spectra at 12 K for Eu3+ in (i) SAN, (ii) SN35, and (iii) SN14 glasses melted in a nitrogen atmosphere and (iv) for Eu3+ in SN14 glass melted in air.

Fig. 2
Fig. 2

Mössbauer spectra of SAN, SN14, and SN35 glasses at room temperature.

Fig. 3
Fig. 3

Excitation spectra at 77, 130, and 200 K and at room temperature for Eu3+ in SN14 glass melted in a nitrogen atmosphere before and after irradiation with a dye laser at 579.4 nm under 10-W/cm2 irradiation for 600 s.

Fig. 4
Fig. 4

Bottom, excitation spectra at 12 and 300 K for Eu3+ in SN35 glass before and after irradiation with a dye laser at 579.6 and 579.4 nm, respectively. Top, the difference signal between excitation spectra before and after burning at 12 K.

Fig. 5
Fig. 5

Hole spectra at 77 K for SAN, SN14, and SN35 glasses at 579.4 nm under 10-W/cm2 irradiation for 60 s. Solid curves, Lorenzian functions fitted to the experimental data points (filled circles).

Fig. 6
Fig. 6

(a), (c) Excitation spectra for Eu3+ in SN35 glass melted in a nitrogen atmosphere before and after irradiation with a dye laser at 77 K. The excitation wavelength is 578.9 nm under 10-W/cm2 irradiation for 600 s. (b) Excitation spectrum 2 h after burning. (d) Effect of irradiation with Ar+ laser light (514.5 nm) on the excitation spectrum after burning. Curves (b) and (d) are shifted downward for clarity.

Fig. 7
Fig. 7

Multipule hole spectra at 77 K for Eu3+ in SN35 glass melted in a nitrogen atmosphere under 10-W/cm2 irradiation for 60 s. (a) Excitation spectrum before and after burning at 579.4 nm. (b), (c), (d) Excitation spectra after burning at 579.9, 578.9, and 578.4 nm, respectively; these curves are shifted downward for clarity.

Tables (1)

Tables Icon

Table 1 Composition of Glasses Used in This Studya

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Na2OSiO2+Na2O

Metrics