Abstract

Persistent spectral hole burning has been observed above 77 K for the 5D07F0 transition of Eu3+ in various silicate glasses melted in a nitrogen atmosphere. A striking and novel feature is that the persistent hole can be burned at room temperature. The spectral hole are undiminished in intensity for 2 h in the dark. The formation of a hole with high thermal stability is accomplished only by a change in the melting atmosphere. At 77 K the efficiency of the hole burning is greater for sodium silicate glasses than for sodium aluminosilicate glasses. A possible hole-burning mechanism, i.e., photoinduced reduction of Eu3+, is suggested.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Macfarlane and R. M. Shelby, in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), Vol. 21, p. 51.
  2. R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole Burning: Science and Application, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.
  3. M. Mitsunaga, N. Uesugi, H. Sasaki, and K. Karaki, “Holographic motion picture by Eu3+:Y2SiO5,” Opt. Lett. 19, 752 (1994).
    [CrossRef] [PubMed]
  4. M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D0–7F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
    [CrossRef]
  5. R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
    [CrossRef]
  6. K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
    [CrossRef]
  7. K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
    [CrossRef] [PubMed]
  8. A. Kurita, T. Kushida, T. Izumitani, and M. Matsukawa, “Persistent spectral hole burning in Sm2+-doped fluoride glasses,” Opt. Lett. 19, 314 (1994).
    [CrossRef] [PubMed]
  9. M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
    [CrossRef]
  10. H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β″-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
    [CrossRef]
  11. Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
    [CrossRef]
  12. M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
    [CrossRef]
  13. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
    [CrossRef]
  14. R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
    [CrossRef]
  15. Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
    [CrossRef]
  16. R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
    [CrossRef]
  17. K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
    [CrossRef]
  18. K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
    [CrossRef]
  19. K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
    [CrossRef]
  20. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
    [CrossRef]
  21. K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
    [CrossRef]
  22. M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
    [CrossRef]
  23. P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
    [CrossRef]
  24. K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
    [CrossRef]
  25. A. Winnacker, R. M. Shelby, and R. M. Macfarlane, “Photon-gated hole burning: a new mechanism using two-step photoionization,” Opt. Lett. 10, 350 (1985).
    [CrossRef] [PubMed]
  26. D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
    [CrossRef]
  27. Y. Yamada and S. Ohno, “Photoreduction of solid europium chloride in KBr by visible two-photon excitation,” Chem. Lett. 465 (1991).
  28. S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
    [CrossRef]
  29. K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
    [CrossRef]

1998 (4)

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

1997 (4)

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

1996 (3)

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β″-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

1995 (2)

M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D0–7F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

1994 (4)

Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
[CrossRef]

R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
[CrossRef]

M. Mitsunaga, N. Uesugi, H. Sasaki, and K. Karaki, “Holographic motion picture by Eu3+:Y2SiO5,” Opt. Lett. 19, 752 (1994).
[CrossRef] [PubMed]

A. Kurita, T. Kushida, T. Izumitani, and M. Matsukawa, “Persistent spectral hole burning in Sm2+-doped fluoride glasses,” Opt. Lett. 19, 314 (1994).
[CrossRef] [PubMed]

1993 (4)

K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
[CrossRef]

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
[CrossRef]

1991 (2)

Y. Yamada and S. Ohno, “Photoreduction of solid europium chloride in KBr by visible two-photon excitation,” Chem. Lett. 465 (1991).

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
[CrossRef]

1990 (1)

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

1987 (1)

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

1985 (1)

1983 (1)

R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
[CrossRef]

Abe, Y.

M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

Bill, H.

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
[CrossRef]

Boey, D. M.

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Bruce, A.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Cho, D. H.

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

Fujita, K.

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

Gavrilovic, P.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Grodkiewicz, W. H.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Hirao, K.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
[CrossRef]

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
[CrossRef]

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

Ishigame, M.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β″-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Izumitani, T.

Jaaniso, R.

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
[CrossRef]

Karaki, K.

Koedijk, J. M. A.

R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
[CrossRef]

Kurita, A.

Kushida, T.

M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D0–7F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
[CrossRef]

A. Kurita, T. Kushida, T. Izumitani, and M. Matsukawa, “Persistent spectral hole burning in Sm2+-doped fluoride glasses,” Opt. Lett. 19, 314 (1994).
[CrossRef] [PubMed]

Macfarlane, R. M.

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
[CrossRef]

A. Winnacker, R. M. Shelby, and R. M. Macfarlane, “Photon-gated hole burning: a new mechanism using two-step photoionization,” Opt. Lett. 10, 350 (1985).
[CrossRef] [PubMed]

R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
[CrossRef]

R. M. Macfarlane and R. M. Shelby, in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), Vol. 21, p. 51.

R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole Burning: Science and Application, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.

Mao, Y.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Matsukawa, M.

Matsuo, S.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β″-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Matsuoka, N.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

Meltzer, R. S.

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Mitsunaga, M.

Morsen, E.

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

Mosel, B. D.

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

Muller-Warmuth, W.

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

Nogami, M.

M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
[CrossRef]

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

Ohno, S.

Y. Yamada and S. Ohno, “Photoreduction of solid europium chloride in KBr by visible two-photon excitation,” Chem. Lett. 465 (1991).

Ohyagi, T.

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

Qiu, J.

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

Sasaki, H.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

M. Mitsunaga, N. Uesugi, H. Sasaki, and K. Karaki, “Holographic motion picture by Eu3+:Y2SiO5,” Opt. Lett. 19, 752 (1994).
[CrossRef] [PubMed]

Schmidt, Th.

Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
[CrossRef]

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

Schokker, B. C.

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

Shelby, R. M.

A. Winnacker, R. M. Shelby, and R. M. Macfarlane, “Photon-gated hole burning: a new mechanism using two-step photoionization,” Opt. Lett. 10, 350 (1985).
[CrossRef] [PubMed]

R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
[CrossRef]

R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole Burning: Science and Application, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.

R. M. Macfarlane and R. M. Shelby, in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), Vol. 21, p. 51.

Singh, S.

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

Soga, N.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
[CrossRef]

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
[CrossRef]

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

Sun, Y.

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

Tanaka, K.

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Room-temperature persistent spectral hole burning of Eu3+ in sodium aluminosilicate glass,” Opt. Lett. 23, 543 (1998).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

Tanaka, M.

M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D0–7F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
[CrossRef]

Todoroki, S.

K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
[CrossRef]

S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
[CrossRef]

K. Hirao, S. Todoroki, D. H. Cho, and N. Soga, “Room-temperature persistent spectral hole burning of Sm2+ in oxide glasses,” Opt. Lett. 18, 1586 (1993).
[CrossRef] [PubMed]

Uesugi, N.

van der Zaag, P. J.

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

Völker, S.

Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
[CrossRef]

R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
[CrossRef]

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

Wannemacher, R.

R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
[CrossRef]

Winnacker, A.

Winterer, M.

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

Yagi, R.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β″-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Yamada, Y.

Y. Yamada and S. Ohno, “Photoreduction of solid europium chloride in KBr by visible two-photon excitation,” Chem. Lett. 465 (1991).

Yugami, H.

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β″-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

M. Nogami, Y. Abe, K. Hirao, and D. H. Cho, “Room temperature persistent spectral hole burning in Sm2+-doped silicate glasses prepared by the sol-gel process,” Appl. Phys. Lett. 66, 2952 (1995).
[CrossRef]

Y. Mao, P. Gavrilovic, S. Singh, A. Bruce, and W. H. Grodkiewicz, “Persistent spectral hole burning at liquid nitrogen temperature in Eu3+-doped aluminosilicate glass,” Appl. Phys. Lett. 68, 3677 (1996).
[CrossRef]

M. Nogami and Y. Abe, “High-temperature persistent spectral hole burning of Eu3+-doped SiO2 glass prepared by the sol-gel process,” Appl. Phys. Lett. 71, 1 (1997).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

K. Tanaka, T. Ohyagi, K. Hirao, and N. Soga, “Fluorescence spectra of Eu(II) in borate and aluminate glasses,” Bull. Chem. Soc. Jpn. 66, 1121 (1993).
[CrossRef]

Chem. Lett. (1)

Y. Yamada and S. Ohno, “Photoreduction of solid europium chloride in KBr by visible two-photon excitation,” Chem. Lett. 465 (1991).

Europhys. Lett. (1)

R. Jaaniso and H. Bill, “Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals,” Europhys. Lett. 16, 569 (1991).
[CrossRef]

J. Am. Ceram. Soc. (1)

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Mössbauer spectroscopy of borate glasses containing divalent europium ions,” J. Am. Ceram. Soc. 81, 1845 (1998).
[CrossRef]

J. Appl. Phys. (3)

K. Tanaka, K. Fujita, N. Soga, J. Qiu, and K. Hirao, “Faraday effect of sodium borate glasses containing divalent europium ions,” J. Appl. Phys. 82, 840 (1997).
[CrossRef]

K. Fujita, K. Tanaka, K. Hirao, and N. Soga, “Fluorescence line narrowing spectroscopy of Sm2+ and Eu3+ in sodium borate glasses,” J. Appl. Phys. 81, 924 (1997).
[CrossRef]

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in sodium aluminosilicate glasses,” J. Appl. Phys. 82, 5114 (1997).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

S. Todoroki, K. Hirao, and N. Soga, “Phonon sideband spectra and local structure around Eu3+ ions in aluminosilicate glasses,” J. Ceram. Soc. Jpn. 101, 1065 (1993).
[CrossRef]

J. Lumin. (3)

P. J. van der Zaag, B. C. Schokker, Th. Schmidt, and S. Völker, “Dynamics of glasses doped with rare earth ions: a study by permanent and transient hole-burning,” J. Lumin. 45, 80 (1990).
[CrossRef]

R. Wannemacher, J. M. A. Koedijk, and S. Völker, “Dynamics of spectral holes in rare-earth-doped glass fibers,” J. Lumin. 60–61, 437 (1994).
[CrossRef]

K. Hirao, S. Todoroki, and N. Soga, “Room temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. 55, 217 (1993).
[CrossRef]

J. Mater. Res. (1)

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13, 1989 (1998).
[CrossRef]

J. Phys. C (1)

M. Winterer, E. Morsen, B. D. Mosel, and W. Muller-Warmuth, “Paramagnetic hyperfine structure in 151Eu Mössbauer spectra of Eu2+ ions in borate glasses,” J. Phys. C 20, 5389 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Fujita, K. Hirao, K. Tanaka, N. Soga, and H. Sasaki, “Persistent spectral hole burning of Eu3+ ions in silicate glasses,” Jpn. J. Appl. Phys. 37, 2267 (1998).
[CrossRef]

Opt. Commun. (1)

R. M. Macfarlane and R. M. Shelby, “Measurement of optical dephasing of Eu3+ and Pr3+ doped silicate glasses by spectral hole burning,” Opt. Commun. 45, 46 (1983).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. B (4)

D. M. Boey, R. M. Macfarlane, Y. Sun, and R. S. Meltzer, “Spectral hole burning of Eu2+ in CaF2,” Phys. Rev. B 54, 6263 (1996).
[CrossRef]

M. Tanaka and T. Kushida, “Effects of static crystal field on the homogeneous width of the 5D0–7F0 line of Eu3+ and Sm2+ in solids,” Phys. Rev. B 52, 4171 (1995).
[CrossRef]

H. Yugami, R. Yagi, S. Matsuo, and M. Ishigame, “Observation of persistent spectral hole burning of Eu3+ in β″-alumina at 110K,” Phys. Rev. B 53, 8283 (1996).
[CrossRef]

Th. Schmidt, R. M. Macfarlane, and S. Völker, “Persistent and transient spectral hole burning in Pr3+- and Eu3+-doped silicate glasses,” Phys. Rev. B 50, 15707 (1994).
[CrossRef]

Other (2)

R. M. Macfarlane and R. M. Shelby, in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), Vol. 21, p. 51.

R. M. Macfarlane and R. M. Shelby, in Persistent Spectral Hole Burning: Science and Application, W. Moerner, ed. (Springer-Verlag, Berlin, 1988), p. 127.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Fluorescence spectrum at 12 K for SN14 glass melted in a nitrogen atmosphere. The excitation wavelength is 465 nm. (b) Excitation spectra at 12 K for Eu3+ in (i) SAN, (ii) SN35, and (iii) SN14 glasses melted in a nitrogen atmosphere and (iv) for Eu3+ in SN14 glass melted in air.

Fig. 2
Fig. 2

Mössbauer spectra of SAN, SN14, and SN35 glasses at room temperature.

Fig. 3
Fig. 3

Excitation spectra at 77, 130, and 200 K and at room temperature for Eu3+ in SN14 glass melted in a nitrogen atmosphere before and after irradiation with a dye laser at 579.4 nm under 10-W/cm2 irradiation for 600 s.

Fig. 4
Fig. 4

Bottom, excitation spectra at 12 and 300 K for Eu3+ in SN35 glass before and after irradiation with a dye laser at 579.6 and 579.4 nm, respectively. Top, the difference signal between excitation spectra before and after burning at 12 K.

Fig. 5
Fig. 5

Hole spectra at 77 K for SAN, SN14, and SN35 glasses at 579.4 nm under 10-W/cm2 irradiation for 60 s. Solid curves, Lorenzian functions fitted to the experimental data points (filled circles).

Fig. 6
Fig. 6

(a), (c) Excitation spectra for Eu3+ in SN35 glass melted in a nitrogen atmosphere before and after irradiation with a dye laser at 77 K. The excitation wavelength is 578.9 nm under 10-W/cm2 irradiation for 600 s. (b) Excitation spectrum 2 h after burning. (d) Effect of irradiation with Ar+ laser light (514.5 nm) on the excitation spectrum after burning. Curves (b) and (d) are shifted downward for clarity.

Fig. 7
Fig. 7

Multipule hole spectra at 77 K for Eu3+ in SN35 glass melted in a nitrogen atmosphere under 10-W/cm2 irradiation for 60 s. (a) Excitation spectrum before and after burning at 579.4 nm. (b), (c), (d) Excitation spectra after burning at 579.9, 578.9, and 578.4 nm, respectively; these curves are shifted downward for clarity.

Tables (1)

Tables Icon

Table 1 Composition of Glasses Used in This Studya

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Na2OSiO2+Na2O

Metrics