Abstract

The upconverted fluorescence dots that appear under photon-avalanche excitation in an erbium-doped fluorozirconate fiber are quantitatively analyzed with respect to the pump-mode structure into the fiber and the energy spatial diffusion between Er3+ ions. By computing the mode-propagation constants, we show that the main luminescent structures periods correspond to beating between low-order pump modes. The observed luminescent dots result from these interferences combined with the excitation intensity threshold of avalanche upconversion. We also investigated the influence of energy-transfer spatial diffusion among Er ions by comparing the pump-mode transverse profiles deduced from avalanche and Addition de Photons par Transfert d’Energie (APTE) emissions. At high pump power the modes widths that correspond to APTE experiments are larger than those obtained from avalanche upconversion by 0.8 μm. We attribute this effect to the resonant energy transfer (4I11/2, 4I15/2)(4I15/2, 4I11/2), which is negligible in photon avalanches because of strong excited-state absorption. From the experimental broadening we estimate that the one-dimensional diffusion length associated with this transfer is 1.13 μm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
    [CrossRef]
  2. A. W. Kueny, W. E. Case, and M. E. Koch, “Nonlinear-optical absorption through photon avalanche,” J. Opt. Soc. Am. B 6, 639–642 (1989).
    [CrossRef]
  3. Ph. Goldner and F. Pellé, “Photon avalanche fluorescence and lasers,” Opt. Mater. 5, 239–249 (1996).
    [CrossRef]
  4. W. Lenth and R. M. Macfarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
    [CrossRef]
  5. H. Scheife, T. Sandrock, E. Heumann, and G. Huber, “Pr, Yb-doped upconversion fibre laser exceeding 1 W of cw output in the red spectral range,” in Advanced Solid State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 313–315.
  6. F. Auzel and Y. Chen, “Multiphonon pumping in Er3+ ZBLAN bulk and fiber, the first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).
    [CrossRef]
  7. F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65, 45–56 (1995).
    [CrossRef]
  8. Y. Chen and F. Auzel, “Room-temperature photon-avalanche up-conversion in an erbium-doped fluoride fiber,” J. Phys. D 27, 1–5 (1994).
  9. M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).
    [CrossRef]
  10. S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).
    [CrossRef]
  11. F. Auzel, “Multiphonon absorption and photon avalanche criterion in erbium doped materials,” Acta Phys. Pol. A 90, 7–19 (1996).
  12. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981), Chap. 7.
  13. F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
    [CrossRef]
  14. C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
    [CrossRef]
  15. D. L. Huber, in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds., Vol. 49 of Topics in Applied Physics (Springer-Verlag, Berlin, 1986), p. 87.

1997

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).
[CrossRef]

1996

F. Auzel, “Multiphonon absorption and photon avalanche criterion in erbium doped materials,” Acta Phys. Pol. A 90, 7–19 (1996).

Ph. Goldner and F. Pellé, “Photon avalanche fluorescence and lasers,” Opt. Mater. 5, 239–249 (1996).
[CrossRef]

1995

F. Auzel and Y. Chen, “Multiphonon pumping in Er3+ ZBLAN bulk and fiber, the first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).
[CrossRef]

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65, 45–56 (1995).
[CrossRef]

1994

Y. Chen and F. Auzel, “Room-temperature photon-avalanche up-conversion in an erbium-doped fluoride fiber,” J. Phys. D 27, 1–5 (1994).

1993

M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).
[CrossRef]

1990

W. Lenth and R. M. Macfarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
[CrossRef]

1989

1982

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

1979

J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

1973

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

Auzel, F.

F. Auzel, “Multiphonon absorption and photon avalanche criterion in erbium doped materials,” Acta Phys. Pol. A 90, 7–19 (1996).

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65, 45–56 (1995).
[CrossRef]

F. Auzel and Y. Chen, “Multiphonon pumping in Er3+ ZBLAN bulk and fiber, the first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).
[CrossRef]

Y. Chen and F. Auzel, “Room-temperature photon-avalanche up-conversion in an erbium-doped fluoride fiber,” J. Phys. D 27, 1–5 (1994).

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

Case, W. E.

A. W. Kueny, W. E. Case, and M. E. Koch, “Nonlinear-optical absorption through photon avalanche,” J. Opt. Soc. Am. B 6, 639–642 (1989).
[CrossRef]

J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Chen, Y.

F. Auzel and Y. Chen, “Multiphonon pumping in Er3+ ZBLAN bulk and fiber, the first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).
[CrossRef]

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65, 45–56 (1995).
[CrossRef]

Y. Chen and F. Auzel, “Room-temperature photon-avalanche up-conversion in an erbium-doped fluoride fiber,” J. Phys. D 27, 1–5 (1994).

Chivian, J. S.

J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Eden, D. D.

J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Goldner, Ph.

Ph. Goldner and F. Pellé, “Photon avalanche fluorescence and lasers,” Opt. Mater. 5, 239–249 (1996).
[CrossRef]

Guy, S.

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).
[CrossRef]

M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).
[CrossRef]

Jacquier, B.

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).
[CrossRef]

M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).
[CrossRef]

Joubert, M. F.

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).
[CrossRef]

M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).
[CrossRef]

Koch, M. E.

Kueny, A. W.

Lawson, C. M.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Lenth, W.

W. Lenth and R. M. Macfarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
[CrossRef]

Macfarlane, R. M.

W. Lenth and R. M. Macfarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
[CrossRef]

Pellé, F.

Ph. Goldner and F. Pellé, “Photon avalanche fluorescence and lasers,” Opt. Mater. 5, 239–249 (1996).
[CrossRef]

Powell, R. C.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Zwicker, W. K.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Acta Phys. Pol. A

F. Auzel, “Multiphonon absorption and photon avalanche criterion in erbium doped materials,” Acta Phys. Pol. A 90, 7–19 (1996).

Appl. Phys. Lett.

J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

J. Lumin.

W. Lenth and R. M. Macfarlane, “Excitation mechanisms for upconversion lasers,” J. Lumin. 45, 346–350 (1990).
[CrossRef]

F. Auzel and Y. Chen, “Photon avalanche luminescence of Er3+ ions in LiYF4 crystal,” J. Lumin. 65, 45–56 (1995).
[CrossRef]

J. Non-Cryst. Solids

F. Auzel and Y. Chen, “Multiphonon pumping in Er3+ ZBLAN bulk and fiber, the first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

Y. Chen and F. Auzel, “Room-temperature photon-avalanche up-conversion in an erbium-doped fluoride fiber,” J. Phys. D 27, 1–5 (1994).

Opt. Mater.

Ph. Goldner and F. Pellé, “Photon avalanche fluorescence and lasers,” Opt. Mater. 5, 239–249 (1996).
[CrossRef]

Phys. Rev. B

M. F. Joubert, S. Guy, and B. Jacquier, “Model of the photon-avalanche effect,” Phys. Rev. B 48, 10031–10037 (1993).
[CrossRef]

S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55, 8240–8248 (1997).
[CrossRef]

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence quenching in NdxLa1−xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Proc. IEEE

F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973).
[CrossRef]

Other

D. L. Huber, in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds., Vol. 49 of Topics in Applied Physics (Springer-Verlag, Berlin, 1986), p. 87.

M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981), Chap. 7.

H. Scheife, T. Sandrock, E. Heumann, and G. Huber, “Pr, Yb-doped upconversion fibre laser exceeding 1 W of cw output in the red spectral range,” in Advanced Solid State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 313–315.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Er3+ energy diagram showing avalanche pump excitation at 579 and 690 nm, cross relaxations (straight vertical arrows), and nonradiative transitions (wavy arrows). The green emission analyzed in this paper is the 4S3/24I15/2 transition at 540 nm (after Ref. 6).

Fig. 2
Fig. 2

Dependence of 4S3/24I15/2 upconverted emission on pump power for excitation at 579 nm (avalanche) and at 676 nm (APTE) in Er:ZBLAN. Squares, experimental points (from Ref. 6). Solid curve, curve computed by the three-level model shown in the inset (parameters: r21=117 s-1, r32=1250 s-1, r31=1250 s-1, α=2000 s-1, and β=W1/W2=10-4). Dotted curve, computed curve of APTE upconversion with intensity parameters from the fiber experiments. Inset, schematic of the three-level model for photon avalanche.

Fig. 3
Fig. 3

Negative side images of the Er:ZBLAN fiber under avalanche excitation. The 4S3/24I15/2 green emission appears on the image as black dashes. (a) Large structure with an average period of 824 μm; (b), (c), (d) small structures with an average period of 133.1 μm pumped at 579.12, 579.32, and 579.53 nm, respectively. Asterisks, structure defects.

Fig. 4
Fig. 4

Displacement of the upconverted fluorescent dots at two locations on the fiber (17.95 and 52.05 cm from the fiber front facet) versus excitation wavelength: ×, experimental data; solid (dotted) curve, computed values for M12M13 (M11M13) interference with a 3.05-μm core radius.

Fig. 5
Fig. 5

Negative side images of the upconverted luminescence in the Er:ZBLAN fiber at 240- and 120-mW incident pump powers for excitations at (a), (b) 579.74 nm; (c), (d) 689.65 nm; (e), (f ) 675.78 nm. (g) Image (e) with increased contrast to show luminescence modulations.

Fig. 6
Fig. 6

Pump-mode widths (FWHM) calculated from upconverted luminescence versus normalized powers inside the fiber under avalanche excitation at 689.65 nm (filled squares) and 579.74 nm (open circles) and APTE excitation at 675.78 nm (filled circles).

Fig. 7
Fig. 7

Comparison of calculated spatial distributions of the 4I11/2 level population without energy diffusion (dotted curve) and with a diffusion length of 1.13 μm (solid curve). The pump profile is Gaussian (2.13-μm FWHM).

Tables (2)

Tables Icon

Table 1 Two-Mode Interference Periods (μm) at 579.94 nm with a Fiber Radius of 3.05 μm

Tables Icon

Table 2 Parameters for Resonant Energy Transfer in Er:ZBLAN (3 wt. %) and NdLaUP

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E=E0(r, ϕ)exp[ j(ωt-βz)],
H=H0(r, ϕ)exp[ j(ωt-βz)]
Jν(u)uJν(u)+Kν(w)wKν(w) Jν(u)uJν(u)+n22n12 Kν(w)wKν(w)
=νβkn12vuw4,
n(x, t) t=D  2n(x, t)x2-n(x, t)τ+R(x),
D1/2NR0W(R)R2dR,

Metrics