Abstract

A Mach–Zehnder interferometer was developed for accurately measuring relative phase shifts of light propagating in photonic colloidal crystals deep into the stop bands. These phase shifts can be used to determine the change in index of refraction and the optical dispersion relation from photonic band structure near the band edges. Phase measurements of colloidal crystals incorporating an impurity peak in the transmission spectrum are also presented.

© 1998 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
  3. E. Yablonovitch, “Photonic bandgap structures,” J. Opt. Soc. Am. B 10, 283 (1993).
  4. E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443 (1993).
  5. E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41, 173 (1994).
  6. W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).
  7. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature (London) 383, 699 (1996).
  8. U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747 (1996).
  9. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).
  10. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143 (1997).
  11. P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).
  12. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).
  13. C. C. Cheng and A. Scherer, “Fabrication of photonic band-gap crystals,” J. Vac. Sci. Technol. 13, 2696 (1995).
  14. C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, “Nanofabricated three dimensional photonic crystal operating at optical wavelengths,” Phys. Scr. T68, 17 (1996).
  15. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).
  16. S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466 (1994).
  17. P. Pieranski, “Colloidal crystals,” Contemp. Phys. 24, 25 (1983).
  18. N. A. Clark, A. J. Hurd, and B. J. Ackerson, “Single colloidal crystals,” Nature (London) 281, 57 (1979).
  19. İ. İ. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315 (1996).
  20. R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503 (1997).
  21. W. L. Vos, R. Sprik, A. vanBlaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996).
  22. R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal crystals,” Phys. Rev. B 57, 3701 (1998).
  23. Duke Scientific Corporation, 2463 Faber Place, Palo Alto, Calif. 94303.
  24. P. Pieranski, E. Dubois-Violette, F. Rothen, and L. Strzelecki, “Geometry of Kossel lines in colloidal crystals,” J. Phys. (France) 42, 53 (1981).
  25. J. B. Bateman, E. J. Weneck, and D. C. Eshler, “Determination of particle size and concentration from spectrophotometric transmission,” J. Colloid Sci. 14, 308 (1959).
  26. R. H. Boundy and R. F. Boyer, Styrene: Its Polymers, Copolymers and Derivatives (Hafner, New York, 1965).
  27. I. Thormahlen, J. Straub, and U. Grigul, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933 (1985).
  28. İ. İ. Tarhan, M. P. Zinkin, and G. H. Watson, “Interferometric technique for the measurement of photonic band structure in colloidal crystals,” Opt. Lett. 20, 1571 (1995).
  29. P. Hariharan, “Modified Mach–Zehnder interferometer,” Appl. Opt. 8, 1925 (1969).
  30. Omega Optical Inc., P.O. Box 573, Brattleboro, Vermont 05302.
  31. İ. İ. Tarhan, “Investigation of optical photonic band structure in fcc colloidal crystals,” Ph.D. dissertation (U. Delaware, Newark, Del., 1996).
  32. İ. İ. Tarhan and G. H. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B 54, 7593 (1996).
  33. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).
  34. R. D. Pradhan, İ. İ. Tarhan, and G. H. Watson, “Impurity modes in the optical stop bands of doped colloidal crystals,” Phys. Rev. B 54, 13721 (1996).
  35. S. A. Asher, J. Holtz, L. Liu, and Z. Wu, “Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays,” J. Am. Chem. Soc. 116, 4997 (1994).

1998 (1)

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal crystals,” Phys. Rev. B 57, 3701 (1998).

1997 (3)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143 (1997).

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503 (1997).

1996 (8)

W. L. Vos, R. Sprik, A. vanBlaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996).

İ. İ. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315 (1996).

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, “Nanofabricated three dimensional photonic crystal operating at optical wavelengths,” Phys. Scr. T68, 17 (1996).

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature (London) 383, 699 (1996).

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747 (1996).

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).

İ. İ. Tarhan and G. H. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B 54, 7593 (1996).

R. D. Pradhan, İ. İ. Tarhan, and G. H. Watson, “Impurity modes in the optical stop bands of doped colloidal crystals,” Phys. Rev. B 54, 13721 (1996).

1995 (3)

İ. İ. Tarhan, M. P. Zinkin, and G. H. Watson, “Interferometric technique for the measurement of photonic band structure in colloidal crystals,” Opt. Lett. 20, 1571 (1995).

C. C. Cheng and A. Scherer, “Fabrication of photonic band-gap crystals,” J. Vac. Sci. Technol. 13, 2696 (1995).

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).

1994 (4)

E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41, 173 (1994).

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466 (1994).

S. A. Asher, J. Holtz, L. Liu, and Z. Wu, “Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays,” J. Am. Chem. Soc. 116, 4997 (1994).

1993 (2)

E. Yablonovitch, “Photonic bandgap structures,” J. Opt. Soc. Am. B 10, 283 (1993).

E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443 (1993).

1992 (1)

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).

1991 (1)

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).

1985 (1)

I. Thormahlen, J. Straub, and U. Grigul, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933 (1985).

1983 (1)

P. Pieranski, “Colloidal crystals,” Contemp. Phys. 24, 25 (1983).

1981 (1)

P. Pieranski, E. Dubois-Violette, F. Rothen, and L. Strzelecki, “Geometry of Kossel lines in colloidal crystals,” J. Phys. (France) 42, 53 (1981).

1979 (1)

N. A. Clark, A. J. Hurd, and B. J. Ackerson, “Single colloidal crystals,” Nature (London) 281, 57 (1979).

1969 (1)

1959 (1)

J. B. Bateman, E. J. Weneck, and D. C. Eshler, “Determination of particle size and concentration from spectrophotometric transmission,” J. Colloid Sci. 14, 308 (1959).

Ackerson, B. J.

N. A. Clark, A. J. Hurd, and B. J. Ackerson, “Single colloidal crystals,” Nature (London) 281, 57 (1979).

Arbet-Engels, V.

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, “Nanofabricated three dimensional photonic crystal operating at optical wavelengths,” Phys. Scr. T68, 17 (1996).

Arjavalingam, G.

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).

Asher, S. A.

S. A. Asher, J. Holtz, L. Liu, and Z. Wu, “Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays,” J. Am. Chem. Soc. 116, 4997 (1994).

Bateman, J. B.

J. B. Bateman, E. J. Weneck, and D. C. Eshler, “Determination of particle size and concentration from spectrophotometric transmission,” J. Colloid Sci. 14, 308 (1959).

Biswas, R.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal crystals,” Phys. Rev. B 57, 3701 (1998).

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).

Bloodgood, J. A.

R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503 (1997).

Brand, S.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature (London) 383, 699 (1996).

Brommer, K. D.

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).

Busch, K.

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747 (1996).

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).

Cheng, C. C.

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, “Nanofabricated three dimensional photonic crystal operating at optical wavelengths,” Phys. Scr. T68, 17 (1996).

C. C. Cheng and A. Scherer, “Fabrication of photonic band-gap crystals,” J. Vac. Sci. Technol. 13, 2696 (1995).

Clark, N. A.

N. A. Clark, A. J. Hurd, and B. J. Ackerson, “Single colloidal crystals,” Nature (London) 281, 57 (1979).

De La Rue, R. M.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature (London) 383, 699 (1996).

Dubois-Violette, E.

P. Pieranski, E. Dubois-Violette, F. Rothen, and L. Strzelecki, “Geometry of Kossel lines in colloidal crystals,” J. Phys. (France) 42, 53 (1981).

Eshler, D. C.

J. B. Bateman, E. J. Weneck, and D. C. Eshler, “Determination of particle size and concentration from spectrophotometric transmission,” J. Colloid Sci. 14, 308 (1959).

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143 (1997).

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466 (1994).

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).

Grigul, U.

I. Thormahlen, J. Straub, and U. Grigul, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933 (1985).

Grüning, U.

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747 (1996).

Hariharan, P.

Ho, K. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).

Ho, K.-M.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal crystals,” Phys. Rev. B 57, 3701 (1998).

Holtz, J.

S. A. Asher, J. Holtz, L. Liu, and Z. Wu, “Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays,” J. Am. Chem. Soc. 116, 4997 (1994).

Hurd, A. J.

N. A. Clark, A. J. Hurd, and B. J. Ackerson, “Single colloidal crystals,” Nature (London) 281, 57 (1979).

Imhof, A.

W. L. Vos, R. Sprik, A. vanBlaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996).

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143 (1997).

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466 (1994).

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

Kolodziejski, L. A.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).

Krauss, T. F.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature (London) 383, 699 (1996).

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).

Lagendijk, A.

W. L. Vos, R. Sprik, A. vanBlaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996).

Lehmann, V.

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747 (1996).

Lim, K.-Y.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).

Liu, L.

S. A. Asher, J. Holtz, L. Liu, and Z. Wu, “Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays,” J. Am. Chem. Soc. 116, 4997 (1994).

Meade, R. D.

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466 (1994).

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).

Ottow, S.

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747 (1996).

Petrich, G. S.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).

Pieranski, P.

P. Pieranski, “Colloidal crystals,” Contemp. Phys. 24, 25 (1983).

P. Pieranski, E. Dubois-Violette, F. Rothen, and L. Strzelecki, “Geometry of Kossel lines in colloidal crystals,” J. Phys. (France) 42, 53 (1981).

Pradhan, R. D.

R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503 (1997).

R. D. Pradhan, İ. İ. Tarhan, and G. H. Watson, “Impurity modes in the optical stop bands of doped colloidal crystals,” Phys. Rev. B 54, 13721 (1996).

Rappe, A. M.

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).

Reif, R.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).

Robertson, W.

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).

Rothen, F.

P. Pieranski, E. Dubois-Violette, F. Rothen, and L. Strzelecki, “Geometry of Kossel lines in colloidal crystals,” J. Phys. (France) 42, 53 (1981).

Scherer, A.

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, “Nanofabricated three dimensional photonic crystal operating at optical wavelengths,” Phys. Scr. T68, 17 (1996).

C. C. Cheng and A. Scherer, “Fabrication of photonic band-gap crystals,” J. Vac. Sci. Technol. 13, 2696 (1995).

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).

Sigalas, M. M.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal crystals,” Phys. Rev. B 57, 3701 (1998).

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

Soukoulis, C. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).

Sprik, R.

W. L. Vos, R. Sprik, A. vanBlaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996).

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

Straub, J.

I. Thormahlen, J. Straub, and U. Grigul, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933 (1985).

Strzelecki, L.

P. Pieranski, E. Dubois-Violette, F. Rothen, and L. Strzelecki, “Geometry of Kossel lines in colloidal crystals,” J. Phys. (France) 42, 53 (1981).

Subramania, G.

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal crystals,” Phys. Rev. B 57, 3701 (1998).

Tarhan, I. I.

İ. İ. Tarhan and G. H. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B 54, 7593 (1996).

İ. İ. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315 (1996).

R. D. Pradhan, İ. İ. Tarhan, and G. H. Watson, “Impurity modes in the optical stop bands of doped colloidal crystals,” Phys. Rev. B 54, 13721 (1996).

İ. İ. Tarhan, M. P. Zinkin, and G. H. Watson, “Interferometric technique for the measurement of photonic band structure in colloidal crystals,” Opt. Lett. 20, 1571 (1995).

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

Thormahlen, I.

I. Thormahlen, J. Straub, and U. Grigul, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933 (1985).

vanBlaaderen, A.

W. L. Vos, R. Sprik, A. vanBlaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996).

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143 (1997).

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466 (1994).

Vos, W. L.

W. L. Vos, R. Sprik, A. vanBlaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996).

Watson, G. H.

R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503 (1997).

R. D. Pradhan, İ. İ. Tarhan, and G. H. Watson, “Impurity modes in the optical stop bands of doped colloidal crystals,” Phys. Rev. B 54, 13721 (1996).

İ. İ. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315 (1996).

İ. İ. Tarhan and G. H. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B 54, 7593 (1996).

İ. İ. Tarhan, M. P. Zinkin, and G. H. Watson, “Interferometric technique for the measurement of photonic band structure in colloidal crystals,” Opt. Lett. 20, 1571 (1995).

Wegdam, G. H.

W. L. Vos, R. Sprik, A. vanBlaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996).

Weneck, E. J.

J. B. Bateman, E. J. Weneck, and D. C. Eshler, “Determination of particle size and concentration from spectrophotometric transmission,” J. Colloid Sci. 14, 308 (1959).

Wu, Z.

S. A. Asher, J. Holtz, L. Liu, and Z. Wu, “Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays,” J. Am. Chem. Soc. 116, 4997 (1994).

Yablonovitch, E.

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, “Nanofabricated three dimensional photonic crystal operating at optical wavelengths,” Phys. Scr. T68, 17 (1996).

E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41, 173 (1994).

E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443 (1993).

E. Yablonovitch, “Photonic bandgap structures,” J. Opt. Soc. Am. B 10, 283 (1993).

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).

Zinkin, M. P.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

U. Grüning, V. Lehmann, S. Ottow, and K. Busch, “Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm,” Appl. Phys. Lett. 68, 747 (1996).

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, “Air–bridge microcavities,” Appl. Phys. Lett. 67, 167 (1995).

S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron length scales,” Appl. Phys. Lett. 65, 1466 (1994).

Contemp. Phys. (1)

P. Pieranski, “Colloidal crystals,” Contemp. Phys. 24, 25 (1983).

J. Am. Chem. Soc. (1)

S. A. Asher, J. Holtz, L. Liu, and Z. Wu, “Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays,” J. Am. Chem. Soc. 116, 4997 (1994).

J. Colloid Sci. (1)

J. B. Bateman, E. J. Weneck, and D. C. Eshler, “Determination of particle size and concentration from spectrophotometric transmission,” J. Colloid Sci. 14, 308 (1959).

J. Mod. Opt. (1)

E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41, 173 (1994).

J. Opt. Soc. Am. B (1)

J. Phys. (France) (1)

P. Pieranski, E. Dubois-Violette, F. Rothen, and L. Strzelecki, “Geometry of Kossel lines in colloidal crystals,” J. Phys. (France) 42, 53 (1981).

J. Phys. Chem. Ref. Data (1)

I. Thormahlen, J. Straub, and U. Grigul, “Refractive index of water and its dependence on wavelength, temperature and density,” J. Phys. Chem. Ref. Data 14, 933 (1985).

J. Phys. Condens. Matter (1)

E. Yablonovitch, “Photonic band-gap crystals,” J. Phys. Condens. Matter 5, 2443 (1993).

J. Vac. Sci. Technol. (1)

C. C. Cheng and A. Scherer, “Fabrication of photonic band-gap crystals,” J. Vac. Sci. Technol. 13, 2696 (1995).

Nature (London) (4)

N. A. Clark, A. J. Hurd, and B. J. Ackerson, “Single colloidal crystals,” Nature (London) 281, 57 (1979).

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143 (1997).

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature (London) 383, 699 (1996).

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143 (1997).

Opt. Lett. (1)

Phys. Rev. B (5)

R. D. Pradhan, İ. İ. Tarhan, and G. H. Watson, “Impurity modes in the optical stop bands of doped colloidal crystals,” Phys. Rev. B 54, 13721 (1996).

İ. İ. Tarhan and G. H. Watson, “Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation,” Phys. Rev. B 54, 7593 (1996).

R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, “Photonic band structure of bcc colloidal crystals,” Phys. Rev. B 55, 9503 (1997).

W. L. Vos, R. Sprik, A. vanBlaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, “Strong effects of photonic band structures on the diffraction of colloidal crystals,” Phys. Rev. B 53, 16231 (1996).

R. Biswas, M. M. Sigalas, G. Subramania, and K.-M. Ho, “Photonic band gaps in colloidal crystals,” Phys. Rev. B 57, 3701 (1998).

Phys. Rev. Lett. (6)

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).

İ. İ. Tarhan and G. H. Watson, “Photonic band structure of fcc colloidal crystals,” Phys. Rev. Lett. 76, 315 (1996).

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).

W. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett. 68, 2023 (1992).

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787 (1996).

Phys. Scr. (1)

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch, “Nanofabricated three dimensional photonic crystal operating at optical wavelengths,” Phys. Scr. T68, 17 (1996).

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413 (1994).

Other (4)

R. H. Boundy and R. F. Boyer, Styrene: Its Polymers, Copolymers and Derivatives (Hafner, New York, 1965).

Duke Scientific Corporation, 2463 Faber Place, Palo Alto, Calif. 94303.

Omega Optical Inc., P.O. Box 573, Brattleboro, Vermont 05302.

İ. İ. Tarhan, “Investigation of optical photonic band structure in fcc colloidal crystals,” Ph.D. dissertation (U. Delaware, Newark, Del., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics