Abstract

We study mode locking of a titanium-doped sapphire laser with a slow saturable absorber in the cavity. We show that the presence of the absorber stabilizes the pulsed mode of laser operation over a broader range of cavity mirror position and for a wider aperture. However, the basic principle of operation is unchanged from that of a conventional Kerr-lens mode-locked laser, in that, in all cases, we observed strong space–time focusing of the pulses into the laser crystal. Thus the absorber cannot lead to shortening of the pulse below the limit imposed by the Kerr-lens mode locking.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhou, G. Taft, C. P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, Opt. Lett. 19, 1149 (1994).
    [CrossRef] [PubMed]
  2. L. Xu, C. Spielmann, F. Krausz, and R. Sipöcs, Opt. Lett. 21, 1259 (1996).
    [CrossRef] [PubMed]
  3. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, Opt. Lett. 22, 1009 (1997).
    [CrossRef] [PubMed]
  4. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  5. M. Piche and F. Salin, Opt. Lett. 18, 1041 (1993).
    [CrossRef]
  6. I. P. Christov, V. D. Stoev, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 20, 2111 (1995).
    [CrossRef] [PubMed]
  7. I. P. Christov, V. D. Stoev, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 21, 1493 (1996).
    [CrossRef] [PubMed]
  8. T. Brabec, Ch. Spielman, and F. Krausz, Opt. Lett. 16, 1961 (1991).
    [CrossRef] [PubMed]
  9. O. E. Martinez, R. L. Fork, and J. P. Gordon, Opt. Lett. 9, 156 (1984).
    [CrossRef] [PubMed]
  10. F. X. Kärtner and U. Keller, Opt. Lett. 20, 16 (1995).
    [CrossRef]
  11. R. Fluck, I. D. Jung, G. Zhang, F. X. Kärtner, and U. Keller, Opt. Lett. 21, 743 (1996).
    [CrossRef] [PubMed]
  12. F. X. Kärtner, I. D. Jung, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 2, 540 (1997).
    [CrossRef]
  13. V. P. Kalosha, M. Miller, and J. Herrmann, Opt. Lett. 23, 117 (1998).
    [CrossRef]
  14. R. E. Bridges, R. W. Boyd, and G. P. Agrawal, J. Opt. Soc. Am. B 13, 553 (1996); 13, 560 (1996).
    [CrossRef]

1998 (1)

1997 (2)

1996 (3)

1995 (2)

1994 (1)

1993 (1)

1991 (2)

1984 (1)

Brabec, T.

Christov, I. P.

Fluck, R.

Fork, R. L.

Gordon, J. P.

Herrmann, J.

Huang, C. P.

Jung, I. D.

Kalosha, V. P.

Kapteyn, H. C.

Kärtner, F. X.

Kean, P. N.

Keller, U.

Krausz, F.

Martinez, O. E.

Matuschek, N.

Miller, M.

Morier-Genoud, F.

Murnane, M. M.

Piche, M.

Salin, F.

Scheuer, V.

Sibbett, W.

Sipöcs, R.

Spence, D. E.

Spielman, Ch.

Spielmann, C.

Stoev, V. D.

Sutter, D. H.

Taft, G.

Tilsch, M.

Tschudi, T.

Xu, L.

Zhang, G.

Zhou, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the resonator used in the model. The focal lengths of the curved mirrors are 3.5 cm. C is the laser crystal at normal incidence. A denotes the saturable absorber.

Fig. 2
Fig. 2

Evolution of the pulse energy in the laser cavity (a) with no absorber and (b) with an absorber. Solid curve, M1M2=57.8 cm, pump area 14 μm; dashed curve, M1M2=61.8 cm, pump area 14 μm; dotted curve, M1M2=61.8 cm, pump area 40 μm. The other distances are M2C=3.44 cm, CM3=3.42 cm, and M3M4=101 cm.

Fig. 3
Fig. 3

Space–time focusing into the crystal in steady state for 0.23- and 0.46-cm-long laser crystals, with a saturable absorber in the resonator. Solid curve, M1M2=57.8 cm, pump area 14 μm; dashed curve, M1M2=61.8 cm, pump area 14 μm; dotted curve, M1M2=61.8 cm, pump area 40 μm.

Fig. 4
Fig. 4

Time dependence of the saturable absorption in steady state at the beam axis (dashed curve) and at a distance equal to the beam radius (dotted line). Solid curve, pulse intensity at the absorber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

q(r, t) t+q-q0Ta=-P(r, t)Wa q,

Metrics