Abstract

High-resolution laser-induced fluorescence spectroscopy has been applied to investigate the hyperfine structure constants and isotope shifts of high-lying even-parity levels of zirconium in the energy range 34 000–37 000 cm-1. By analysis of the measured spectra, the hyperfine-structure constants of seven levels and isotope shifts of eight transitions are determined.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Dontsov, “Isotope shift in the spectrum of Zr I,” Opt. Spectrosc. 6, 1 (1959).
  2. K. Heilig, K. Schmitz, and A. Steudel, “Isotopievershiebung im Zirkon I-Spektrum,” Z. Phys. 176, 120 (1963).
    [CrossRef]
  3. S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
    [CrossRef]
  4. D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209 (1988); R. J. McLean, P. Hannaford, P. L. Larkins, and W. J. Rowlands, “Diode laser saturated absorption measurements of isotope shifts and hyperfine structure in Zr I,” Opt. Commun. 102, 43 (1993); P. Hannaford, D. S. Gough, R. J. McLean, and W. J. Rowlands, “Precision laser saturation spectroscopy in zirconium: correlation between the field and mass isotope shifts,” in Laser Spectroscopy XII, M. Inguscio, M. Allegrini, and A. Sassø, eds. (World Scientific, Singapore, 1996), p. 339.
    [CrossRef]
  5. L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946 (1993).
    [CrossRef] [PubMed]
  6. G. Chevalier and J.-M. Gagne, “Mesures des desplacements isotopiques du Zr I des transitions dans le domaine de la Rhodamine 6G,” Opt. Commun. 57, 327 (1986); G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127 (1987); “Hyperfine structure in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B JOBPDE 5, 1409 (1988).
    [CrossRef]
  7. O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986); P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyperfine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 2409 (1988).
    [CrossRef]
  8. D. S. Gough and P. Hannaford, “Very high resolution saturation spectroscopy in hollow-cathode and glow discharges,” Opt. Commun. 55, 91 (1985).
    [CrossRef]
  9. C. Bourauel, W. Rupprecht, and S. Buttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
    [CrossRef]
  10. P. Hannaford and D. S. Gough, “High quality saturated absorption spectroscopy in a sputtered vapor: application to isotope shifts in Zr I,” in Laser Spectroscopy IX, M. S. Feld, J. E. Thomas, and A. Mooradian, eds. (Academic, Boston, 1989), p. 83.
  11. C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shifts determination of Zr I by laser induced fluorescence spectroscopy,” Jpn. J. Appl. Phys. (to be published).
  12. C. Delsart and J. C. Keller, “Absorption line narrowing (A.L.N.) in a three-level system of neon under interaction with two quasi-resonant lasers,” Opt. Commun. 15, 91 (1975).
    [CrossRef]
  13. L. A. Hackel, C. F. Bender, M. A. Johnson, and M. C. Rushford, “Hyperfine structure measurement of high-lying levels of uranium,” J. Opt. Soc. Am. 69, 230–232 (1979).
    [CrossRef]
  14. R. Avril, M. de Labachellerie, F. Viala, and A. Petit, “Hyperfine structure of 2 and 4 eV levels in uranium,” J. Less-Common Met. 122, 47 (1986).
    [CrossRef]
  15. L. Jia, C. Jing, G. Guan, Z. Zhou, and F. Lin, “Hyperfine structure studies of high-lying even-parity levels of 139La I by resonantly enhanced Doppler-free two-photon spectroscopy,” J. Opt. Soc. Am. B 10, 433 (1993); L. Jia, C. Jing, Z. Zhou, and F. Lin, “Studies of high-lying even-parity levels of Sm I: energies and isotope shifts,” J. Opt. Soc. Am. B 10, 1317 (1993); “Hyperfine structure studies of high-lying odd-parity levels of Gd I by resonantly enhanced Doppler-free two-photon spectroscopy,” J. Opt. Soc. Am. B JOBPDE 10, 2269 (1993).
    [CrossRef]
  16. E. Biemont, N. Grevesse, P. Hannaford, and R. M. Lowe, “Oscillator strength for Zr I and Zr II and a new determination of the solar abundance of zirconium,” Astrophys. J. 248, 867 (1981).
    [CrossRef]
  17. P. Hannaford and R. M. Lowe, “Determination of atomic lifetimes using laser-induced fluorescence from sputtered metal vapor,” Opt. Eng. 22, 532 (1983).
    [CrossRef]
  18. C. Corliss and W. R. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements, Natl. Bur. Stand. Monograph No. 53 (U.S. Govt. Printing Office, Washington, D.C., 1962).
  19. C. E. Moore, Atomic Energy Levels as Derived from the Analyses of Optical Spectra, NSRDS-NBS 35 (U.S. Govt. Printing Office, Washington, D.C., 1952), Vol. II.
  20. S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molecule d’lode, Laboratoire Aime-Cotton CNRS II-91405 Orsay (Centre National de la Researche Scientifique, Paris, 1978).

1993 (1)

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946 (1993).
[CrossRef] [PubMed]

1987 (1)

C. Bourauel, W. Rupprecht, and S. Buttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
[CrossRef]

1986 (1)

R. Avril, M. de Labachellerie, F. Viala, and A. Petit, “Hyperfine structure of 2 and 4 eV levels in uranium,” J. Less-Common Met. 122, 47 (1986).
[CrossRef]

1985 (1)

D. S. Gough and P. Hannaford, “Very high resolution saturation spectroscopy in hollow-cathode and glow discharges,” Opt. Commun. 55, 91 (1985).
[CrossRef]

1983 (1)

P. Hannaford and R. M. Lowe, “Determination of atomic lifetimes using laser-induced fluorescence from sputtered metal vapor,” Opt. Eng. 22, 532 (1983).
[CrossRef]

1981 (1)

E. Biemont, N. Grevesse, P. Hannaford, and R. M. Lowe, “Oscillator strength for Zr I and Zr II and a new determination of the solar abundance of zirconium,” Astrophys. J. 248, 867 (1981).
[CrossRef]

1979 (1)

1978 (1)

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[CrossRef]

1975 (1)

C. Delsart and J. C. Keller, “Absorption line narrowing (A.L.N.) in a three-level system of neon under interaction with two quasi-resonant lasers,” Opt. Commun. 15, 91 (1975).
[CrossRef]

1963 (1)

K. Heilig, K. Schmitz, and A. Steudel, “Isotopievershiebung im Zirkon I-Spektrum,” Z. Phys. 176, 120 (1963).
[CrossRef]

1959 (1)

I. P. Dontsov, “Isotope shift in the spectrum of Zr I,” Opt. Spectrosc. 6, 1 (1959).

Avril, R.

R. Avril, M. de Labachellerie, F. Viala, and A. Petit, “Hyperfine structure of 2 and 4 eV levels in uranium,” J. Less-Common Met. 122, 47 (1986).
[CrossRef]

Bender, C. F.

Biemont, E.

E. Biemont, N. Grevesse, P. Hannaford, and R. M. Lowe, “Oscillator strength for Zr I and Zr II and a new determination of the solar abundance of zirconium,” Astrophys. J. 248, 867 (1981).
[CrossRef]

Bourauel, C.

C. Bourauel, W. Rupprecht, and S. Buttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
[CrossRef]

Buttgenbach, S.

C. Bourauel, W. Rupprecht, and S. Buttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
[CrossRef]

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[CrossRef]

de Labachellerie, M.

R. Avril, M. de Labachellerie, F. Viala, and A. Petit, “Hyperfine structure of 2 and 4 eV levels in uranium,” J. Less-Common Met. 122, 47 (1986).
[CrossRef]

Delsart, C.

C. Delsart and J. C. Keller, “Absorption line narrowing (A.L.N.) in a three-level system of neon under interaction with two quasi-resonant lasers,” Opt. Commun. 15, 91 (1975).
[CrossRef]

Dicke, R.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[CrossRef]

Dontsov, I. P.

I. P. Dontsov, “Isotope shift in the spectrum of Zr I,” Opt. Spectrosc. 6, 1 (1959).

Gebauer, H.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[CrossRef]

Gough, D. S.

D. S. Gough and P. Hannaford, “Very high resolution saturation spectroscopy in hollow-cathode and glow discharges,” Opt. Commun. 55, 91 (1985).
[CrossRef]

Green, L. W.

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946 (1993).
[CrossRef] [PubMed]

Grevesse, N.

E. Biemont, N. Grevesse, P. Hannaford, and R. M. Lowe, “Oscillator strength for Zr I and Zr II and a new determination of the solar abundance of zirconium,” Astrophys. J. 248, 867 (1981).
[CrossRef]

Hackel, L. A.

Hannaford, P.

D. S. Gough and P. Hannaford, “Very high resolution saturation spectroscopy in hollow-cathode and glow discharges,” Opt. Commun. 55, 91 (1985).
[CrossRef]

P. Hannaford and R. M. Lowe, “Determination of atomic lifetimes using laser-induced fluorescence from sputtered metal vapor,” Opt. Eng. 22, 532 (1983).
[CrossRef]

E. Biemont, N. Grevesse, P. Hannaford, and R. M. Lowe, “Oscillator strength for Zr I and Zr II and a new determination of the solar abundance of zirconium,” Astrophys. J. 248, 867 (1981).
[CrossRef]

Heilig, K.

K. Heilig, K. Schmitz, and A. Steudel, “Isotopievershiebung im Zirkon I-Spektrum,” Z. Phys. 176, 120 (1963).
[CrossRef]

Johnson, M. A.

Keller, J. C.

C. Delsart and J. C. Keller, “Absorption line narrowing (A.L.N.) in a three-level system of neon under interaction with two quasi-resonant lasers,” Opt. Commun. 15, 91 (1975).
[CrossRef]

Kuhnen, R.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[CrossRef]

Lowe, R. M.

P. Hannaford and R. M. Lowe, “Determination of atomic lifetimes using laser-induced fluorescence from sputtered metal vapor,” Opt. Eng. 22, 532 (1983).
[CrossRef]

E. Biemont, N. Grevesse, P. Hannaford, and R. M. Lowe, “Oscillator strength for Zr I and Zr II and a new determination of the solar abundance of zirconium,” Astrophys. J. 248, 867 (1981).
[CrossRef]

McRae, G. A.

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946 (1993).
[CrossRef] [PubMed]

Petit, A.

R. Avril, M. de Labachellerie, F. Viala, and A. Petit, “Hyperfine structure of 2 and 4 eV levels in uranium,” J. Less-Common Met. 122, 47 (1986).
[CrossRef]

Rochefort, P. A.

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946 (1993).
[CrossRef] [PubMed]

Rupprecht, W.

C. Bourauel, W. Rupprecht, and S. Buttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
[CrossRef]

Rushford, M. C.

Schmitz, K.

K. Heilig, K. Schmitz, and A. Steudel, “Isotopievershiebung im Zirkon I-Spektrum,” Z. Phys. 176, 120 (1963).
[CrossRef]

Steudel, A.

K. Heilig, K. Schmitz, and A. Steudel, “Isotopievershiebung im Zirkon I-Spektrum,” Z. Phys. 176, 120 (1963).
[CrossRef]

Traber, F.

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[CrossRef]

Viala, F.

R. Avril, M. de Labachellerie, F. Viala, and A. Petit, “Hyperfine structure of 2 and 4 eV levels in uranium,” J. Less-Common Met. 122, 47 (1986).
[CrossRef]

Astrophys. J. (1)

E. Biemont, N. Grevesse, P. Hannaford, and R. M. Lowe, “Oscillator strength for Zr I and Zr II and a new determination of the solar abundance of zirconium,” Astrophys. J. 248, 867 (1981).
[CrossRef]

J. Less-Common Met. (1)

R. Avril, M. de Labachellerie, F. Viala, and A. Petit, “Hyperfine structure of 2 and 4 eV levels in uranium,” J. Less-Common Met. 122, 47 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

C. Delsart and J. C. Keller, “Absorption line narrowing (A.L.N.) in a three-level system of neon under interaction with two quasi-resonant lasers,” Opt. Commun. 15, 91 (1975).
[CrossRef]

D. S. Gough and P. Hannaford, “Very high resolution saturation spectroscopy in hollow-cathode and glow discharges,” Opt. Commun. 55, 91 (1985).
[CrossRef]

Opt. Eng. (1)

P. Hannaford and R. M. Lowe, “Determination of atomic lifetimes using laser-induced fluorescence from sputtered metal vapor,” Opt. Eng. 22, 532 (1983).
[CrossRef]

Opt. Spectrosc. (1)

I. P. Dontsov, “Isotope shift in the spectrum of Zr I,” Opt. Spectrosc. 6, 1 (1959).

Phys. Rev. A (1)

L. W. Green, G. A. McRae, and P. A. Rochefort, “Selective resonant ionization of zirconium isotopes using intermediate-state alignment,” Phys. Rev. A 47, 4946 (1993).
[CrossRef] [PubMed]

Z. Phys. (1)

K. Heilig, K. Schmitz, and A. Steudel, “Isotopievershiebung im Zirkon I-Spektrum,” Z. Phys. 176, 120 (1963).
[CrossRef]

Z. Phys. A (1)

S. Buttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Traber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear electric quadrupole moment,” Z. Phys. A 286, 125 (1978).
[CrossRef]

Z. Phys. D (1)

C. Bourauel, W. Rupprecht, and S. Buttgenbach, “Isotope shift measurements in zirconium by Doppler-free laser polarization spectroscopy,” Z. Phys. D 7, 129 (1987).
[CrossRef]

Other (9)

P. Hannaford and D. S. Gough, “High quality saturated absorption spectroscopy in a sputtered vapor: application to isotope shifts in Zr I,” in Laser Spectroscopy IX, M. S. Feld, J. E. Thomas, and A. Mooradian, eds. (Academic, Boston, 1989), p. 83.

C. Lim, K. Nomaru, and Y. Izawa, “Hyperfine structure constants and isotope shifts determination of Zr I by laser induced fluorescence spectroscopy,” Jpn. J. Appl. Phys. (to be published).

D. S. Gough and P. Hannaford, “High quality saturated absorption spectroscopy in a sputtered vapour: application to hyperfine structure in Zr I,” Opt. Commun. 67, 209 (1988); R. J. McLean, P. Hannaford, P. L. Larkins, and W. J. Rowlands, “Diode laser saturated absorption measurements of isotope shifts and hyperfine structure in Zr I,” Opt. Commun. 102, 43 (1993); P. Hannaford, D. S. Gough, R. J. McLean, and W. J. Rowlands, “Precision laser saturation spectroscopy in zirconium: correlation between the field and mass isotope shifts,” in Laser Spectroscopy XII, M. Inguscio, M. Allegrini, and A. Sassø, eds. (World Scientific, Singapore, 1996), p. 339.
[CrossRef]

G. Chevalier and J.-M. Gagne, “Mesures des desplacements isotopiques du Zr I des transitions dans le domaine de la Rhodamine 6G,” Opt. Commun. 57, 327 (1986); G. Chevalier, J.-M. Gagne, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127 (1987); “Hyperfine structure in 91Zr by saturation optogalvanic spectroscopy,” J. Opt. Soc. Am. B JOBPDE 5, 1409 (1988).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986); P. A. Hackett, H. D. Morrison, O. L. Bourne, B. Simard, and D. M. Rayner, “Pulsed single-mode laser ionization of hyperfine levels of zirconium-91,” J. Opt. Soc. Am. B 5, 2409 (1988).
[CrossRef]

C. Corliss and W. R. Bozman, Experimental Transition Probabilities for Spectral Lines of Seventy Elements, Natl. Bur. Stand. Monograph No. 53 (U.S. Govt. Printing Office, Washington, D.C., 1962).

C. E. Moore, Atomic Energy Levels as Derived from the Analyses of Optical Spectra, NSRDS-NBS 35 (U.S. Govt. Printing Office, Washington, D.C., 1952), Vol. II.

S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molecule d’lode, Laboratoire Aime-Cotton CNRS II-91405 Orsay (Centre National de la Researche Scientifique, Paris, 1978).

L. Jia, C. Jing, G. Guan, Z. Zhou, and F. Lin, “Hyperfine structure studies of high-lying even-parity levels of 139La I by resonantly enhanced Doppler-free two-photon spectroscopy,” J. Opt. Soc. Am. B 10, 433 (1993); L. Jia, C. Jing, Z. Zhou, and F. Lin, “Studies of high-lying even-parity levels of Sm I: energies and isotope shifts,” J. Opt. Soc. Am. B 10, 1317 (1993); “Hyperfine structure studies of high-lying odd-parity levels of Gd I by resonantly enhanced Doppler-free two-photon spectroscopy,” J. Opt. Soc. Am. B JOBPDE 10, 2269 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for Zr i laser-induced fluorescence spectroscopy. The atomic beam is traveling up out of the plane of the page. Ref. cavity, Fabry–Perot interferometer (FSR 150 MHz); P.M. tube, Hamamatsu R980 photomultiplier tube.  

Fig. 2
Fig. 2

Diagram of the studied transitions, level positions, and designations. The levels are designated according to the convention of Ref. 19, i.e., a 3FJ=4d25s2 3FJ, z 5FJ°=4d25s(4F)5p 5FJ°, z 3FJ°=4d25s(4F)5p 3FJ°, z 3DJ°=4d25s(4F)5p 3DJ°, e 5FJ=4d25s(4F)6s 5FJ. Dashed lines represent energy levels whose positions and lifetimes were recently studied by laser spectroscopy.

Fig. 3
Fig. 3

Laser-induced fluorescence spectra for the Zr i 16 787-cm-1 (a 3F2z 5F1°) transition. The hyperfine component g was clearly observed in trace (b) when the Doppler width of the atomic beam was reduced to less than 20 MHz. The assignment for the 91Zr hyperfine components, labeled ai, are given in Table 1. The Arabic numerals correspond to the even isotopes of zirconium.

Fig. 4
Fig. 4

Resonant two-photon laser induced fluorescence spectra for the Zr i 18 260 cm-1 (z 5F1°e 5F1) transition. The top trace is the reference signal from the Fabry–Perot interferometer, and the second trace is the fluorescence signal of the I2 cell. The identification of the I2 line is from Ref. 20. The assignment for the 91Zr hyperfine components, labeled ag, are given in Table 1. The Arabic numerals correspond to the even isotopes of zirconium.

Fig. 5
Fig. 5

Two-photon laser induced fluorescence spectra for the Zr i 18 098 cm-1 (z 3D3°36 342 cm-1) transition. The Arabic numerals written in boldface on the left side of the spectra correspond to the even isotopes and hyperfine components of the intermediate level, z 3D3°. The even isotopes and hyperfine components of the 36 342 cm-1 level are written on the spectra.

Tables (3)

Tables Icon

Table 1 Assignments of 91Zr Hyperfine Components and Their Relative Intensities

Tables Icon

Table 2 Magnetic Dipole (A) and Electric Quadrupole (B) Interaction Structure Constants of 91Zr for the High-Lying Even-Parity Levels

Tables Icon

Table 3 Isotope Shifts from the Intermediate Levels to High-Lying Levels by Resonantly Enhanced Laser-Induced Two-Photon Fluorescence Spectroscopy

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W2(F2, F1)(2F1+1)(2F2+1)IJ1F11F2J22,
W(J, I, F)
=C2 A+(3/2)C(C+1)-2I(I+1)J(J+1)2I(2I-1)2J(J-1) B,
C=F(F+1)-I(I+1)-J(J+1),
Δν=W(J, I, F)-W(J, I, F),

Metrics