Abstract

The spatial resolution of optically addressed spatial light modulators operating in longitudinal-field Stark geometry is reduced mainly by the lateral diffusion of carriers parallel to the plane of the wells. We describe two-dimensional transport modeling within a self-consistently small amplitude approximation. An analytical expression for the carrier’s spatial modulation rate is obtained and demonstrates that the spatial resolution is characterized by the velocity anisotropy. We compare our analytical model with experimental results obtained for a GaAs/AlGaAs system (devices operating at 0.8-μm wavelength) and for a InGaAs/InGaAsP system (devices operating at 1.55-μm wavelength). Good agreement between the theoretical and the experimental results is achieved.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993).
    [CrossRef]
  2. C. De Matos, A. Le Corre, H. L’Haridon, S. Gosselin, and B. Lambert, “Fe-doped GaInAs/GaInAsP photorefractive multiple quantum well operating at 1.55 μm,” Appl. Phys. Lett. 70, 3591 (1997).
    [CrossRef]
  3. W. S. Rabinovitch, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044 (1995).
    [CrossRef]
  4. I. Lahiri, M. Aguilar, D. D. Nolte, and M. R. Melloch, “High-efficiency Stark-geometry photorefractive quantum well with intrinsic cladding layers,” Appl. Phys. Lett. 68, 517 (1996).
    [CrossRef]
  5. A. Partovi, A. M. Glass, T. H. Chiu, and D. T. H. Liu, “High speed joint-transform optical image correlator using GaAs/AlGaAs semi-insulating multiple quantum wells and laser diodes,” Opt. Lett. 18, 906 (1993).
    [CrossRef]
  6. M. C. Nuss, M. Li, T. H. Chiu, A. M. Wiener, and A. Partovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664 (1994).
    [CrossRef] [PubMed]
  7. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718 (1997).
    [CrossRef] [PubMed]
  8. P. Tayebati, C. Hantzis, E. Canoglu, and R. N. Stacks, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446 (1997).
    [CrossRef]
  9. S. L. Smith and L. Hesselink, “Transport modeling of multiple quantum well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076 (1997).
    [CrossRef]
  10. I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p–i–n diode quantum well spatial light modulators,” Appl. Phys. Lett. 67, 1408 (1995).
    [CrossRef]
  11. C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996).
    [CrossRef]
  12. S. L. Smith and L. Hesselink, “Analytical model for grating dynamics in surface-charge-dominated pockels readout optical modulator devices,” J. Opt. Soc. Am. B 11, 1878 (1994).
    [CrossRef]
  13. E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996).
    [CrossRef]
  14. W. R. Roach, “Resolution of electro-optic light valves,” IEEE Trans. Electron Devices 21, 453 (1974).
    [CrossRef]
  15. A. Le Corre, C. De Matos, H. L’Haridon, S. Gosselin, and B. Lambert, “Photorefractive multiple quantum well device using quantum dots as trapping zones,” Appl. Phys. Lett. 70, 1575 (1997).
    [CrossRef]
  16. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, New York, 1984).
  17. C. M. Yang, E. Canoglu, E. Garmire, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Measurement of effective drift velocities of electrons and holes in shallow multiple-quantum-well p–i–n modulators,” IEEE J. Quantum Electron. 33, 1498 (1997).
    [CrossRef]
  18. D. D. Nolte and M. R. Melloch, Photorefractive Effects and Materials (Kluwer, Dordrecht, The Netherlands, 1995), Chap. 7.
  19. D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: application to photorefractive quantum wells,” Opt. Commun. 115, 606 (1995).
    [CrossRef]
  20. R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
    [CrossRef]

1997

C. De Matos, A. Le Corre, H. L’Haridon, S. Gosselin, and B. Lambert, “Fe-doped GaInAs/GaInAsP photorefractive multiple quantum well operating at 1.55 μm,” Appl. Phys. Lett. 70, 3591 (1997).
[CrossRef]

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718 (1997).
[CrossRef] [PubMed]

P. Tayebati, C. Hantzis, E. Canoglu, and R. N. Stacks, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446 (1997).
[CrossRef]

S. L. Smith and L. Hesselink, “Transport modeling of multiple quantum well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076 (1997).
[CrossRef]

A. Le Corre, C. De Matos, H. L’Haridon, S. Gosselin, and B. Lambert, “Photorefractive multiple quantum well device using quantum dots as trapping zones,” Appl. Phys. Lett. 70, 1575 (1997).
[CrossRef]

C. M. Yang, E. Canoglu, E. Garmire, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Measurement of effective drift velocities of electrons and holes in shallow multiple-quantum-well p–i–n modulators,” IEEE J. Quantum Electron. 33, 1498 (1997).
[CrossRef]

R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
[CrossRef]

1996

E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996).
[CrossRef]

I. Lahiri, M. Aguilar, D. D. Nolte, and M. R. Melloch, “High-efficiency Stark-geometry photorefractive quantum well with intrinsic cladding layers,” Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

1995

W. S. Rabinovitch, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044 (1995).
[CrossRef]

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p–i–n diode quantum well spatial light modulators,” Appl. Phys. Lett. 67, 1408 (1995).
[CrossRef]

D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: application to photorefractive quantum wells,” Opt. Commun. 115, 606 (1995).
[CrossRef]

1994

1993

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993).
[CrossRef]

A. Partovi, A. M. Glass, T. H. Chiu, and D. T. H. Liu, “High speed joint-transform optical image correlator using GaAs/AlGaAs semi-insulating multiple quantum wells and laser diodes,” Opt. Lett. 18, 906 (1993).
[CrossRef]

1974

W. R. Roach, “Resolution of electro-optic light valves,” IEEE Trans. Electron Devices 21, 453 (1974).
[CrossRef]

Aguilar, M.

I. Lahiri, M. Aguilar, D. D. Nolte, and M. R. Melloch, “High-efficiency Stark-geometry photorefractive quantum well with intrinsic cladding layers,” Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

Bowman, S. R.

W. S. Rabinovitch, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044 (1995).
[CrossRef]

Brubaker, R. M.

Canoglu, E.

P. Tayebati, C. Hantzis, E. Canoglu, and R. N. Stacks, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446 (1997).
[CrossRef]

C. M. Yang, E. Canoglu, E. Garmire, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Measurement of effective drift velocities of electrons and holes in shallow multiple-quantum-well p–i–n modulators,” IEEE J. Quantum Electron. 33, 1498 (1997).
[CrossRef]

E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996).
[CrossRef]

Chiu, T. H.

E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996).
[CrossRef]

M. C. Nuss, M. Li, T. H. Chiu, A. M. Wiener, and A. Partovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664 (1994).
[CrossRef] [PubMed]

A. Partovi, A. M. Glass, T. H. Chiu, and D. T. H. Liu, “High speed joint-transform optical image correlator using GaAs/AlGaAs semi-insulating multiple quantum wells and laser diodes,” Opt. Lett. 18, 906 (1993).
[CrossRef]

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993).
[CrossRef]

Collet, J. H.

R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
[CrossRef]

Cunningham, J. E.

C. M. Yang, E. Canoglu, E. Garmire, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Measurement of effective drift velocities of electrons and holes in shallow multiple-quantum-well p–i–n modulators,” IEEE J. Quantum Electron. 33, 1498 (1997).
[CrossRef]

De Matos, C.

A. Le Corre, C. De Matos, H. L’Haridon, S. Gosselin, and B. Lambert, “Photorefractive multiple quantum well device using quantum dots as trapping zones,” Appl. Phys. Lett. 70, 1575 (1997).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, S. Gosselin, and B. Lambert, “Fe-doped GaInAs/GaInAsP photorefractive multiple quantum well operating at 1.55 μm,” Appl. Phys. Lett. 70, 3591 (1997).
[CrossRef]

R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996).
[CrossRef]

Ding, Y.

Garmire, E.

C. M. Yang, E. Canoglu, E. Garmire, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Measurement of effective drift velocities of electrons and holes in shallow multiple-quantum-well p–i–n modulators,” IEEE J. Quantum Electron. 33, 1498 (1997).
[CrossRef]

E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996).
[CrossRef]

Glass, A. M.

A. Partovi, A. M. Glass, T. H. Chiu, and D. T. H. Liu, “High speed joint-transform optical image correlator using GaAs/AlGaAs semi-insulating multiple quantum wells and laser diodes,” Opt. Lett. 18, 906 (1993).
[CrossRef]

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993).
[CrossRef]

Goossen, K. W.

C. M. Yang, E. Canoglu, E. Garmire, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Measurement of effective drift velocities of electrons and holes in shallow multiple-quantum-well p–i–n modulators,” IEEE J. Quantum Electron. 33, 1498 (1997).
[CrossRef]

Gosselin, S.

A. Le Corre, C. De Matos, H. L’Haridon, S. Gosselin, and B. Lambert, “Photorefractive multiple quantum well device using quantum dots as trapping zones,” Appl. Phys. Lett. 70, 1575 (1997).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, S. Gosselin, and B. Lambert, “Fe-doped GaInAs/GaInAsP photorefractive multiple quantum well operating at 1.55 μm,” Appl. Phys. Lett. 70, 3591 (1997).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996).
[CrossRef]

Grac, R.

R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
[CrossRef]

Hantzis, C.

P. Tayebati, C. Hantzis, E. Canoglu, and R. N. Stacks, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446 (1997).
[CrossRef]

Hesselink, L.

S. L. Smith and L. Hesselink, “Transport modeling of multiple quantum well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076 (1997).
[CrossRef]

S. L. Smith and L. Hesselink, “Analytical model for grating dynamics in surface-charge-dominated pockels readout optical modulator devices,” J. Opt. Soc. Am. B 11, 1878 (1994).
[CrossRef]

Jan, W. Y.

C. M. Yang, E. Canoglu, E. Garmire, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Measurement of effective drift velocities of electrons and holes in shallow multiple-quantum-well p–i–n modulators,” IEEE J. Quantum Electron. 33, 1498 (1997).
[CrossRef]

Katzer, D. S.

W. S. Rabinovitch, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044 (1995).
[CrossRef]

Knox, W. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993).
[CrossRef]

Kwolek, K. M.

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p–i–n diode quantum well spatial light modulators,” Appl. Phys. Lett. 67, 1408 (1995).
[CrossRef]

D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: application to photorefractive quantum wells,” Opt. Commun. 115, 606 (1995).
[CrossRef]

Kyono, C. S.

W. S. Rabinovitch, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044 (1995).
[CrossRef]

L’Haridon, H.

C. De Matos, A. Le Corre, H. L’Haridon, S. Gosselin, and B. Lambert, “Fe-doped GaInAs/GaInAsP photorefractive multiple quantum well operating at 1.55 μm,” Appl. Phys. Lett. 70, 3591 (1997).
[CrossRef]

A. Le Corre, C. De Matos, H. L’Haridon, S. Gosselin, and B. Lambert, “Photorefractive multiple quantum well device using quantum dots as trapping zones,” Appl. Phys. Lett. 70, 1575 (1997).
[CrossRef]

R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996).
[CrossRef]

Lahiri, I.

I. Lahiri, M. Aguilar, D. D. Nolte, and M. R. Melloch, “High-efficiency Stark-geometry photorefractive quantum well with intrinsic cladding layers,” Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p–i–n diode quantum well spatial light modulators,” Appl. Phys. Lett. 67, 1408 (1995).
[CrossRef]

Lambert, B.

A. Le Corre, C. De Matos, H. L’Haridon, S. Gosselin, and B. Lambert, “Photorefractive multiple quantum well device using quantum dots as trapping zones,” Appl. Phys. Lett. 70, 1575 (1997).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, S. Gosselin, and B. Lambert, “Fe-doped GaInAs/GaInAsP photorefractive multiple quantum well operating at 1.55 μm,” Appl. Phys. Lett. 70, 3591 (1997).
[CrossRef]

R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996).
[CrossRef]

Le Corre, A.

C. De Matos, A. Le Corre, H. L’Haridon, S. Gosselin, and B. Lambert, “Fe-doped GaInAs/GaInAsP photorefractive multiple quantum well operating at 1.55 μm,” Appl. Phys. Lett. 70, 3591 (1997).
[CrossRef]

R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
[CrossRef]

A. Le Corre, C. De Matos, H. L’Haridon, S. Gosselin, and B. Lambert, “Photorefractive multiple quantum well device using quantum dots as trapping zones,” Appl. Phys. Lett. 70, 1575 (1997).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996).
[CrossRef]

Li, M.

Liu, D. T. H.

Mahgerefteh, D.

E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996).
[CrossRef]

Melloch, M. R.

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718 (1997).
[CrossRef] [PubMed]

I. Lahiri, M. Aguilar, D. D. Nolte, and M. R. Melloch, “High-efficiency Stark-geometry photorefractive quantum well with intrinsic cladding layers,” Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p–i–n diode quantum well spatial light modulators,” Appl. Phys. Lett. 67, 1408 (1995).
[CrossRef]

Nolte, D. D.

Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718 (1997).
[CrossRef] [PubMed]

I. Lahiri, M. Aguilar, D. D. Nolte, and M. R. Melloch, “High-efficiency Stark-geometry photorefractive quantum well with intrinsic cladding layers,” Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p–i–n diode quantum well spatial light modulators,” Appl. Phys. Lett. 67, 1408 (1995).
[CrossRef]

D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: application to photorefractive quantum wells,” Opt. Commun. 115, 606 (1995).
[CrossRef]

Nuss, M. C.

O’Bryan, H. M.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993).
[CrossRef]

Olson, D. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993).
[CrossRef]

Partovi, A.

E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996).
[CrossRef]

M. C. Nuss, M. Li, T. H. Chiu, A. M. Wiener, and A. Partovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664 (1994).
[CrossRef] [PubMed]

A. Partovi, A. M. Glass, T. H. Chiu, and D. T. H. Liu, “High speed joint-transform optical image correlator using GaAs/AlGaAs semi-insulating multiple quantum wells and laser diodes,” Opt. Lett. 18, 906 (1993).
[CrossRef]

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993).
[CrossRef]

Pleumeekers, J.

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996).
[CrossRef]

Pugnet, M.

R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
[CrossRef]

Rabinovitch, W. S.

W. S. Rabinovitch, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044 (1995).
[CrossRef]

Roach, W. R.

W. R. Roach, “Resolution of electro-optic light valves,” IEEE Trans. Electron Devices 21, 453 (1974).
[CrossRef]

Salaün, S.

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996).
[CrossRef]

Smith, S. L.

S. L. Smith and L. Hesselink, “Transport modeling of multiple quantum well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076 (1997).
[CrossRef]

S. L. Smith and L. Hesselink, “Analytical model for grating dynamics in surface-charge-dominated pockels readout optical modulator devices,” J. Opt. Soc. Am. B 11, 1878 (1994).
[CrossRef]

Stacks, R. N.

P. Tayebati, C. Hantzis, E. Canoglu, and R. N. Stacks, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446 (1997).
[CrossRef]

Tayebati, P.

P. Tayebati, C. Hantzis, E. Canoglu, and R. N. Stacks, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446 (1997).
[CrossRef]

Weiner, A. M.

White, J. O.

R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
[CrossRef]

Wiener, A. M.

Yang, C. M.

C. M. Yang, E. Canoglu, E. Garmire, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Measurement of effective drift velocities of electrons and holes in shallow multiple-quantum-well p–i–n modulators,” IEEE J. Quantum Electron. 33, 1498 (1997).
[CrossRef]

E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996).
[CrossRef]

Zydzik, G. J.

E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996).
[CrossRef]

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993).
[CrossRef]

Appl. Phys. Lett.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, and W. H. Knox, “Cr-doped GaAs/AlGaAs semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. 62, 464 (1993).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, S. Gosselin, and B. Lambert, “Fe-doped GaInAs/GaInAsP photorefractive multiple quantum well operating at 1.55 μm,” Appl. Phys. Lett. 70, 3591 (1997).
[CrossRef]

W. S. Rabinovitch, S. R. Bowman, D. S. Katzer, and C. S. Kyono, “Intrinsic multiple quantum well spatial light modulators,” Appl. Phys. Lett. 66, 1044 (1995).
[CrossRef]

I. Lahiri, M. Aguilar, D. D. Nolte, and M. R. Melloch, “High-efficiency Stark-geometry photorefractive quantum well with intrinsic cladding layers,” Appl. Phys. Lett. 68, 517 (1996).
[CrossRef]

P. Tayebati, C. Hantzis, E. Canoglu, and R. N. Stacks, “An optically addressed modulator based on low-temperature-grown multiple quantum well GaAlAs,” Appl. Phys. Lett. 71, 446 (1997).
[CrossRef]

I. Lahiri, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Photorefractive p–i–n diode quantum well spatial light modulators,” Appl. Phys. Lett. 67, 1408 (1995).
[CrossRef]

C. De Matos, A. Le Corre, H. L’Haridon, B. Lambert, S. Salaün, J. Pleumeekers, and S. Gosselin, “Photorefractive p–i–n diode quantum well operating at 1.55 μm,” Appl. Phys. Lett. 68, 3576 (1996).
[CrossRef]

E. Canoglu, C. M. Yang, E. Garmire, D. Mahgerefteh, A. Partovi, T. H. Chiu, and G. J. Zydzik, “Carrier transport in a photorefractive multiple quantum well device,” Appl. Phys. Lett. 69, 316 (1996).
[CrossRef]

A. Le Corre, C. De Matos, H. L’Haridon, S. Gosselin, and B. Lambert, “Photorefractive multiple quantum well device using quantum dots as trapping zones,” Appl. Phys. Lett. 70, 1575 (1997).
[CrossRef]

IEEE J. Quantum Electron.

C. M. Yang, E. Canoglu, E. Garmire, K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Measurement of effective drift velocities of electrons and holes in shallow multiple-quantum-well p–i–n modulators,” IEEE J. Quantum Electron. 33, 1498 (1997).
[CrossRef]

IEEE Trans. Electron Devices

W. R. Roach, “Resolution of electro-optic light valves,” IEEE Trans. Electron Devices 21, 453 (1974).
[CrossRef]

J. Appl. Phys.

S. L. Smith and L. Hesselink, “Transport modeling of multiple quantum well optically addressed spatial light modulators,” J. Appl. Phys. 81, 2076 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: application to photorefractive quantum wells,” Opt. Commun. 115, 606 (1995).
[CrossRef]

Opt. Lett.

Superlattices Microstruct.

R. Grac, M. Pugnet, J. H. Collet, B. Lambert, C. De Matos, H. L’Haridon, A. Le Corre, and J. O. White, “Photodiffraction in GaInAs/InGaAsP multiple quantum wells enclosed in a microcavity,” Superlattices Microstruct. 22, 505 (1997).
[CrossRef]

Other

D. D. Nolte and M. R. Melloch, Photorefractive Effects and Materials (Kluwer, Dordrecht, The Netherlands, 1995), Chap. 7.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Device geometry of a SLM using a MQW as an electro-optic layer (thickness 2L and dielectric permittivity 1) surrounded by insulating layers (thickness d and dielectric permittivity 2). The electron trajectory is shown. During the moving, the lateral electric field increases (because of the electric field screening), so a deviation appears that takes electrons off bright fringes.

Fig. 2
Fig. 2

Experimental results obtained by Lahiri et al. compared with the theoretical curves derived by the model described in Section 3. We can observe relatively good agreement.

Fig. 3
Fig. 3

Comparison of our solution and the phenomenological fit proposed by Nolte and Melloch, a cutoff fringe spacing Λc as shown.

Fig. 4
Fig. 4

Experimental results obtained with samples C and D compared with theoretical curves derived by the model described in Section 3. We can observe relatively good agreement.

Fig. 5
Fig. 5

Theoretical results obtained with the same device parameters as for samples C and D but with the MQW composed of 26 periods, corresponding to L=0.2 μm. The cutoff fringe spacing of the sample without trapping layers reaches Λc=9.3 μm.

Tables (2)

Tables Icon

Table 1 Device Parameters for the GaAs/AlGaAs SLM’s

Tables Icon

Table 2 Device Parameters for the InGaAs/InGaAsP SLM’s

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

nt=1e jn+g(x, z)-nτn,
pt=-1e jp+g(x, z)-pτp,
jn=eμn(nE+VTn),
jp=eμp(pE-VTp),
g(x, z)=αI0(1+m cos Kx),
σ+=σ(0)+mσ+(1) cos Kx,
σ-=-σ(0)-mσ-(1) cos Kx,
Ez(x, z)=-Ez(0)+mEz(1)(z)cos Kx,
Ex(x, z)=-mEx(1)(z)sin Kx.
Ez(1)=σ+(1)1 1+21 tanh KLtanh Kd-1 cosh Kzcosh KL,
Ex(1)=σ+(1)1 1+21 tanh KLtanh Kd-1 sinh Kzcosh KL.
n=n0(z)+mn1(z)cos(Kx)
-μnzτnVT 2n0z2+vzn(0)τn n0z+n0=αI0τn,
vzn(0)=μnzEz(0).
vzn(0) n1z-μnzEz(1) n0z+n1τn+μnxEx(1)n0K
-μnzn0 Ez(1)z=αI0.
Ez(1)z=KEx(1).
vzn(0)τn n1z-vzn(1)τn n0z+n1+vxn(1)τnn0K
=αI0τn,
1n0 n1z-1n0 vzn(1)vzn(0) n0z+Nvzn(0)τn+vxn(1)vzn(0) K
=αI0n0vzn(0)=ψ,
vxn(1)=N×vxnmax,
vzn(1)=N×vznmax=N×vzn(0),
Nz+1vzn(0)τn+vxnmaxvzn(0) KN=ψ.
γ=1vzn(0)τn+vxnmaxvzn(0) K,
N(z)=[Ψ(z)+1-Ψ(0)]exp(-γz),
N(z, K)=β(z) exp-vxnmaxvzn(0) Kz.
Leff=vzn(0)τn.
N(Λ)=β exp-πvxnmaxΛ/2Lvzn(0)Leff>L
N(Λ)=β exp-πvxnmaxΛ/2Leffvzn(0)Leff<L.
Ns(z, K)=β(z) exp-vxnmaxvzn(0) Kz×exp-(vxnmax)s(vzn(0))s K(z-L).
Ns(Λ)=β exp-πvxnmaxΛ/2 Livzn(0)×exp-π(vxnmax)sΛ/2 (Li)s[vzn(0)]s,
(Li)s=[vnz(0)]sτns.
Ns(Λ)=β exp-πvxnmaxΛ/2 Livzn(0)+vxnmaxΛ/2 τns
Ns(Λ)=β exp-πtzntxn+τnstxn,
Ns(Λ,τns=0)=N(Λ),
η1-L+LG(z)dz2
η11+(Λc/Λ)22,

Metrics