Abstract

Crystallization and phase separation are severe degradation mechanisms of photorefractive (PR) guest–host systems. Additionally, the response time of PR guest–host systems is in some cases limited by a large contribution of slow chromophore reorientation to the PR effect. The synthesis of fully functionalized systems with glass transition temperatures well above room temperature is a way to restrict these degradation mechanisms and to reduce the PR effect to a pure charge generation and transport phenomenon. We present novel, fully functionalized PR polymers based on polyester. Permanent poling of the systems is demonstrated and quantitatively investigated. The PR properties are measured by degenerate four-wave mixing and two-beam coupling experiments as a function of the external electric field and the degree of permanent poling. One of the systems shows response times of approximately 200 ms with Δn1×10-3. To our knowledge, this work presents the first characterization of PR efficiencies for fully functionalized polymers as a function of the permanent Pockels coefficient χ(2)(-ω;ω, 0).

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585 (1997).
    [Crossref]
  2. K. Meerholz, B. L. Volodin, Sandolphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497 (1994).
    [Crossref]
  3. O. Zobel, M. Eckl, P. Strohriegl, and D. Haarer, “A polysiloxane-based photorefractive polymer with high optical gain and diffraction efficiency,” Adv. Mater. 7, 911 (1995).
    [Crossref]
  4. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515 (1997).
    [Crossref]
  5. F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).
  6. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320 (1994).
    [Crossref]
  7. P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
    [Crossref] [PubMed]
  8. G. P. Wiederrecht, B. A. Yoon, and M. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794 (1995).
    [Crossref]
  9. S. Schloter, U. Hofmann, P. Strohriegl, H.-W. Schmidt, and D. Haarer, “High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores,” J. Opt. Soc. Am. B 15, 2473 (1998).
    [Crossref]
  10. R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
    [Crossref]
  11. Z. Sekkat, J. Wood, E. F. Aust, W. Knoll, W. Volksen, and R. D. Miller, “Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain,” J. Opt. Soc. Am. B 13, 1713 (1996).
    [Crossref]
  12. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
    [Crossref]
  13. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734 (1990).
    [Crossref]
  14. G. Pfister, “Hopping transport in molecularly doped organic polymer,” Phys. Rev. B 16, 3676 (1977).
    [Crossref]
  15. X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629 (1996).
    [Crossref]
  16. K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser-induced reorientation of the optical axis in liquid-crystalline side chain polymers,” Makromol. Chem. 10, 477 (1989).
  17. Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68 (1994).
  18. S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
    [Crossref]
  19. M. Kocher, T. K. Däubler, E. Harth, U. Scherf, A. Gügel, and D. Neher, “Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide,” Appl. Phys. Lett. 72, 650 (1998).
    [Crossref]

1998 (2)

S. Schloter, U. Hofmann, P. Strohriegl, H.-W. Schmidt, and D. Haarer, “High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores,” J. Opt. Soc. Am. B 15, 2473 (1998).
[Crossref]

M. Kocher, T. K. Däubler, E. Harth, U. Scherf, A. Gügel, and D. Neher, “Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide,” Appl. Phys. Lett. 72, 650 (1998).
[Crossref]

1997 (4)

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585 (1997).
[Crossref]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515 (1997).
[Crossref]

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

1996 (4)

R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
[Crossref]

Z. Sekkat, J. Wood, E. F. Aust, W. Knoll, W. Volksen, and R. D. Miller, “Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain,” J. Opt. Soc. Am. B 13, 1713 (1996).
[Crossref]

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
[Crossref] [PubMed]

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629 (1996).
[Crossref]

1995 (2)

G. P. Wiederrecht, B. A. Yoon, and M. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794 (1995).
[Crossref]

O. Zobel, M. Eckl, P. Strohriegl, and D. Haarer, “A polysiloxane-based photorefractive polymer with high optical gain and diffraction efficiency,” Adv. Mater. 7, 911 (1995).
[Crossref]

1994 (4)

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68 (1994).

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[Crossref]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320 (1994).
[Crossref]

K. Meerholz, B. L. Volodin, Sandolphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497 (1994).
[Crossref]

1990 (1)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734 (1990).
[Crossref]

1989 (1)

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser-induced reorientation of the optical axis in liquid-crystalline side chain polymers,” Makromol. Chem. 10, 477 (1989).

1977 (1)

G. Pfister, “Hopping transport in molecularly doped organic polymer,” Phys. Rev. B 16, 3676 (1977).
[Crossref]

Anderle, K.

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser-induced reorientation of the optical axis in liquid-crystalline side chain polymers,” Makromol. Chem. 10, 477 (1989).

Aust, E. F.

Biber, M.

R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
[Crossref]

Birenheide, R.

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser-induced reorientation of the optical axis in liquid-crystalline side chain polymers,” Makromol. Chem. 10, 477 (1989).

Bittner, R.

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

Bjorklund, G. C.

Bräuchle, C.

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

Burland, D. M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
[Crossref] [PubMed]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[Crossref]

Däubler, T. K.

M. Kocher, T. K. Däubler, E. Harth, U. Scherf, A. Gügel, and D. Neher, “Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide,” Appl. Phys. Lett. 72, 650 (1998).
[Crossref]

DeNardin, Y.

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

Eckl, M.

R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
[Crossref]

O. Zobel, M. Eckl, P. Strohriegl, and D. Haarer, “A polysiloxane-based photorefractive polymer with high optical gain and diffraction efficiency,” Adv. Mater. 7, 911 (1995).
[Crossref]

Eich, M.

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser-induced reorientation of the optical axis in liquid-crystalline side chain polymers,” Makromol. Chem. 10, 477 (1989).

Eisenbach, C. D.

R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
[Crossref]

Eisenbach, C.-D.

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

Ewert, K.

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

Geletneky, C.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
[Crossref] [PubMed]

Grunnet-Jepsen, A.

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515 (1997).
[Crossref]

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585 (1997).
[Crossref]

Gügel, A.

M. Kocher, T. K. Däubler, E. Harth, U. Scherf, A. Gügel, and D. Neher, “Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide,” Appl. Phys. Lett. 72, 650 (1998).
[Crossref]

Haarer, D.

S. Schloter, U. Hofmann, P. Strohriegl, H.-W. Schmidt, and D. Haarer, “High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores,” J. Opt. Soc. Am. B 15, 2473 (1998).
[Crossref]

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
[Crossref]

O. Zobel, M. Eckl, P. Strohriegl, and D. Haarer, “A polysiloxane-based photorefractive polymer with high optical gain and diffraction efficiency,” Adv. Mater. 7, 911 (1995).
[Crossref]

Hache, F.

Hagen, R.

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
[Crossref]

Hall, H. K.

Harth, E.

M. Kocher, T. K. Däubler, E. Harth, U. Scherf, A. Gügel, and D. Neher, “Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide,” Appl. Phys. Lett. 72, 650 (1998).
[Crossref]

Hofmann, U.

S. Schloter, U. Hofmann, P. Strohriegl, H.-W. Schmidt, and D. Haarer, “High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores,” J. Opt. Soc. Am. B 15, 2473 (1998).
[Crossref]

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

Hohle, C.

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

Jiang, X. L.

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629 (1996).
[Crossref]

Jurich, M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
[Crossref] [PubMed]

Kippelen, B.

K. Meerholz, B. L. Volodin, Sandolphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497 (1994).
[Crossref]

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68 (1994).

Knoll, W.

Kocher, M.

M. Kocher, T. K. Däubler, E. Harth, U. Scherf, A. Gügel, and D. Neher, “Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide,” Appl. Phys. Lett. 72, 650 (1998).
[Crossref]

Kumar, J.

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629 (1996).
[Crossref]

Lee, V. Y.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
[Crossref] [PubMed]

Li, L.

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629 (1996).
[Crossref]

Lukaszuk, K.

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

Lundquist, P. M.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
[Crossref] [PubMed]

Lyon, S. R.

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734 (1990).
[Crossref]

Matschiner, R.

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

Meerholz, K.

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

K. Meerholz, B. L. Volodin, Sandolphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497 (1994).
[Crossref]

Miller, R. D.

Moerner, W. E.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585 (1997).
[Crossref]

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515 (1997).
[Crossref]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320 (1994).
[Crossref]

Moylan, C. R.

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
[Crossref] [PubMed]

Neher, D.

M. Kocher, T. K. Däubler, E. Harth, U. Scherf, A. Gügel, and D. Neher, “Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide,” Appl. Phys. Lett. 72, 650 (1998).
[Crossref]

Padias, A. B.

Peyghambarian, N.

Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68 (1994).

K. Meerholz, B. L. Volodin, Sandolphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497 (1994).
[Crossref]

Pfister, G.

G. Pfister, “Hopping transport in molecularly doped organic polymer,” Phys. Rev. B 16, 3676 (1977).
[Crossref]

Sahr, O.

R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
[Crossref]

Sandalphon,

Sandolphon,

K. Meerholz, B. L. Volodin, Sandolphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497 (1994).
[Crossref]

Scherf, U.

M. Kocher, T. K. Däubler, E. Harth, U. Scherf, A. Gügel, and D. Neher, “Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide,” Appl. Phys. Lett. 72, 650 (1998).
[Crossref]

Schloter, S.

S. Schloter, U. Hofmann, P. Strohriegl, H.-W. Schmidt, and D. Haarer, “High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores,” J. Opt. Soc. Am. B 15, 2473 (1998).
[Crossref]

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

Schmidt, H.-W.

S. Schloter, U. Hofmann, P. Strohriegl, H.-W. Schmidt, and D. Haarer, “High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores,” J. Opt. Soc. Am. B 15, 2473 (1998).
[Crossref]

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

Sekkat, Z.

Sens, R.

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

Silence, S. M.

Strohriegl, P.

S. Schloter, U. Hofmann, P. Strohriegl, H.-W. Schmidt, and D. Haarer, “High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores,” J. Opt. Soc. Am. B 15, 2473 (1998).
[Crossref]

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
[Crossref]

O. Zobel, M. Eckl, P. Strohriegl, and D. Haarer, “A polysiloxane-based photorefractive polymer with high optical gain and diffraction efficiency,” Adv. Mater. 7, 911 (1995).
[Crossref]

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734 (1990).
[Crossref]

Thompson, C. L.

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515 (1997).
[Crossref]

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585 (1997).
[Crossref]

Tripathy, S. K.

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629 (1996).
[Crossref]

Twieg, R. J.

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515 (1997).
[Crossref]

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
[Crossref] [PubMed]

Volksen, W.

Volodin, B. L.

K. Meerholz, B. L. Volodin, Sandolphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497 (1994).
[Crossref]

Walsh, C. A.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[Crossref]

Wasielewski, M.

G. P. Wiederrecht, B. A. Yoon, and M. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794 (1995).
[Crossref]

Wendorff, J. H.

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser-induced reorientation of the optical axis in liquid-crystalline side chain polymers,” Makromol. Chem. 10, 477 (1989).

Wiederrecht, G. P.

G. P. Wiederrecht, B. A. Yoon, and M. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794 (1995).
[Crossref]

Wood, J.

Wortmann, R.

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
[Crossref] [PubMed]

Würthner, F.

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

Yoon, B. A.

G. P. Wiederrecht, B. A. Yoon, and M. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794 (1995).
[Crossref]

Zobel, O.

R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
[Crossref]

O. Zobel, M. Eckl, P. Strohriegl, and D. Haarer, “A polysiloxane-based photorefractive polymer with high optical gain and diffraction efficiency,” Adv. Mater. 7, 911 (1995).
[Crossref]

Adv. Mater. (1)

O. Zobel, M. Eckl, P. Strohriegl, and D. Haarer, “A polysiloxane-based photorefractive polymer with high optical gain and diffraction efficiency,” Adv. Mater. 7, 911 (1995).
[Crossref]

Angew. Chem. (1)

F. Würthner, R. Wortmann, R. Matschiner, K. Lukaszuk, K. Meerholz, Y. DeNardin, R. Bittner, C. Bräuchle, and R. Sens, “Merocyaninfarbstoffe im Cyanlimit: eine neue Chromophorklasse für photorefraktive Materialien,” Angew. Chem. 109, 981 (1997).

Annu. Rev. Mater. Sci. (1)

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585 (1997).
[Crossref]

Appl. Phys. Lett. (4)

A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515 (1997).
[Crossref]

X. L. Jiang, L. Li, J. Kumar, and S. K. Tripathy, “Photoassisted poling induced second harmonic generation with in-plane anisotropy in azobenzene containing polymer films,” Appl. Phys. Lett. 69, 3629 (1996).
[Crossref]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734 (1990).
[Crossref]

M. Kocher, T. K. Däubler, E. Harth, U. Scherf, A. Gügel, and D. Neher, “Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide,” Appl. Phys. Lett. 72, 650 (1998).
[Crossref]

Chem. Rev. (1)

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[Crossref]

J. Appl. Phys. (1)

R. Hagen, O. Zobel, O. Sahr, M. Biber, M. Eckl, P. Strohriegl, C. D. Eisenbach, and D. Haarer, “Poling and orientational relaxation: comparison of nonlinear optical main-chain and side-chain polymers,” J. Appl. Phys. 80, 3162 (1996).
[Crossref]

J. Opt. Soc. Am. B (3)

Makromol. Chem. (1)

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser-induced reorientation of the optical axis in liquid-crystalline side chain polymers,” Makromol. Chem. 10, 477 (1989).

Nature (London) (1)

K. Meerholz, B. L. Volodin, Sandolphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497 (1994).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

G. Pfister, “Hopping transport in molecularly doped organic polymer,” Phys. Rev. B 16, 3676 (1977).
[Crossref]

Proc. SPIE (1)

S. Schloter, U. Hofmann, R. Hagen, C. Hohle, K. Ewert, P. Strohriegl, C.-D. Eisenbach, H.-W. Schmidt, and D. Haarer, “New photorefractive polymers for real-time holography,” Proc. SPIE 3144, 142 (1997).
[Crossref]

Science (2)

P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, and D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182 (1996).
[Crossref] [PubMed]

G. P. Wiederrecht, B. A. Yoon, and M. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Investigated fully functionalized photorefractive polymers PCDI and PCDT and sensitizer TNF. The molar ratios of the three functionalities are x=17%, y=50%, and z=33%.

Fig. 2
Fig. 2

Poling process of the system PCDI:TNF; the inset shows the obtained permanent electro-optic coefficient χ33(2)(-ω; ω, 0) at the wavelength λ=633 nm for both materials. For details see the text.

Fig. 3
Fig. 3

Gain coefficient Γ as a function of the external electric-field strength E for PCDI:TNF (Epol=30 V/μm).

Fig. 4
Fig. 4

Diffraction efficiency η for a p-polarized reading beam as a function of the external electric-field strength E for different poling fields Epol (PCDI:TNF).

Fig. 5
Fig. 5

Modulation of the index of refraction, Δnp, for p polarization for PCDI:TNF as calculated from the data of Fig. 4. The lines are algebraic fits to Δn(E) (see Table 1).

Fig. 6
Fig. 6

Diffraction efficiency η for s- and p-polarized reading beams as a function of the external electric field E (Epol=50 V/μm) for PCDI:TNF. The inset shows the corresponding modulation of the refractive index.

Fig. 7
Fig. 7

Response time τ versus applied electric field for the systems PCDI:TNF and PCDT:TNF. The response times were obtained by exponential fits according to Eq. (3).  

Tables (1)

Tables Icon

Table 1 Result of an Algebraic Fit Δn=aEb to the Modulation of the Refractive Index, Δn(E), for Different Poling Field Strengths Epol

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ=1d/cos Θ [ln(γ0β)-ln(β+1-γ0)],
η=sin2Δnπde1e2λ(cos Θ1 cos Θ2)1/2,
η=ηmax exp-2τ t,

Metrics