Abstract

When a broad-area semiconductor Laser (BAL) is operated near threshold or at moderate current, experimental results show that grating feedback (GF) can destabilize the spatial mode structures even though the frequency bandwidth is actually compressed by a factor of 45. Yet at higher injection currents (>2.5I/Ith), because the free-running BAL already exhibits severe filamentation, GF has little influence on the spatial modes, even though the spectral width continues to be compressed by the same factor. This behavior is suggested by the measurement of intensity noise versus pump current.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Philipp-Rutz, “High-radiance room-temperature GaAs lasers with controlled radiation in a single transverse mode,” IEEE J. Quantum Electron. QE-8, 632–641 (1972).
    [CrossRef]
  2. W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
    [CrossRef]
  3. J. R. Andrews and G. L. Schuster, “High-power and high-spatial-coherence broad-area power amplifier,” Opt. Lett. 16, 913–915 (1991).
    [CrossRef] [PubMed]
  4. J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, and M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
    [CrossRef] [PubMed]
  5. J. R. Marciante and G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
    [CrossRef]
  6. Y. Li, C. K. Wu, M. B. Snipes, Jr., and J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE 1634, 532–536 (1992).
    [CrossRef]
  7. P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, and D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
    [CrossRef]
  8. T. Day, M. Brownell, and I. F. Wu, “Widely tunable external cavity diode lasers,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 35–41 (1995).
  9. D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm,” Opt. Commun. 130, 91–84 (1996).
    [CrossRef]
  10. P. Zorabedian, Tunable Lasers Handbook (Academic, New York, 1995), Chap. 8.
  11. D. M. Kane and A. P. Willis, “External-cavity lasers with different devices and collimating optics,” Appl. Opt. 34, 4316–4325 (1995).
    [CrossRef] [PubMed]
  12. M. W. Pan, B. P. Shi, and G. R. Gray, “Semiconductor laser dynamics subject to strong optical feedback,” Opt. Lett. 22, 166–168 (1997).
    [CrossRef] [PubMed]
  13. M. Muenkel, C. Simmendinger, and O. Hess, “Controlling temporal and spatio-temporal dynamics in semiconductorlasers by delayed optical feedback,” presented at the Society of Industrial and Applied Mathematics Conference, May 1997.
  14. J. V. Moloney and D. Hochheiser, “Control of optical turbulence in high brightness semiconductor lasers,” presented at the Society of Industrial and Applied Mathematics Conference, May 1997.
  15. R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral modes of broad area semiconductor lasers: theory and experiment,” IEEE J. Quantum Electron. 27, 312–320 (1991).
    [CrossRef]
  16. L. Goldberg and M. K. Chun, “Injection locking characteristics of a 1-W broad stripe laser diode,” Appl. Phys. Lett. 53, 1900–1902 (1988).
    [CrossRef]
  17. G. L. Abbas, S. Yang, V. W. S. Chan, and J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
    [CrossRef]

1997 (1)

1996 (3)

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, and M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

J. R. Marciante and G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
[CrossRef]

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm,” Opt. Commun. 130, 91–84 (1996).
[CrossRef]

1995 (1)

1992 (2)

Y. Li, C. K. Wu, M. B. Snipes, Jr., and J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE 1634, 532–536 (1992).
[CrossRef]

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, and D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

1991 (2)

R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral modes of broad area semiconductor lasers: theory and experiment,” IEEE J. Quantum Electron. 27, 312–320 (1991).
[CrossRef]

J. R. Andrews and G. L. Schuster, “High-power and high-spatial-coherence broad-area power amplifier,” Opt. Lett. 16, 913–915 (1991).
[CrossRef] [PubMed]

1989 (1)

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

1988 (2)

L. Goldberg and M. K. Chun, “Injection locking characteristics of a 1-W broad stripe laser diode,” Appl. Phys. Lett. 53, 1900–1902 (1988).
[CrossRef]

G. L. Abbas, S. Yang, V. W. S. Chan, and J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

1972 (1)

E. M. Philipp-Rutz, “High-radiance room-temperature GaAs lasers with controlled radiation in a single transverse mode,” IEEE J. Quantum Electron. QE-8, 632–641 (1972).
[CrossRef]

Abbas, G. L.

G. L. Abbas, S. Yang, V. W. S. Chan, and J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Agrawal, G. P.

J. R. Marciante and G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
[CrossRef]

Andrews, J. R.

Balle, S.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, and M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

Beyea, D. M.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, and D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Bystrom, K. J.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Chan, V. W. S.

G. L. Abbas, S. Yang, V. W. S. Chan, and J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Chelnokov, A. V.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, and D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Chun, M. K.

L. Goldberg and M. K. Chun, “Injection locking characteristics of a 1-W broad stripe laser diode,” Appl. Phys. Lett. 53, 1900–1902 (1988).
[CrossRef]

Cody, J. G.

R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral modes of broad area semiconductor lasers: theory and experiment,” IEEE J. Quantum Electron. 27, 312–320 (1991).
[CrossRef]

Fujimoto, J. G.

G. L. Abbas, S. Yang, V. W. S. Chan, and J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Gavrilovic, P.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, and D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Goldberg, L.

L. Goldberg and M. K. Chun, “Injection locking characteristics of a 1-W broad stripe laser diode,” Appl. Phys. Lett. 53, 1900–1902 (1988).
[CrossRef]

Gray, G. R.

Kane, D. M.

Lang, R. J.

R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral modes of broad area semiconductor lasers: theory and experiment,” IEEE J. Quantum Electron. 27, 312–320 (1991).
[CrossRef]

Larsson, A. G.

R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral modes of broad area semiconductor lasers: theory and experiment,” IEEE J. Quantum Electron. 27, 312–320 (1991).
[CrossRef]

Laschek, M.

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm,” Opt. Commun. 130, 91–84 (1996).
[CrossRef]

Li, Y.

Y. Li, C. K. Wu, M. B. Snipes, Jr., and J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE 1634, 532–536 (1992).
[CrossRef]

Marciante, J. R.

J. R. Marciante and G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
[CrossRef]

Martin-Regalado, J.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, and M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

McInerney, J. G.

Y. Li, C. K. Wu, M. B. Snipes, Jr., and J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE 1634, 532–536 (1992).
[CrossRef]

Mooradian, A.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

O’Neill, M. S.

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, and D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Pan, M. W.

Philipp-Rutz, E. M.

E. M. Philipp-Rutz, “High-radiance room-temperature GaAs lasers with controlled radiation in a single transverse mode,” IEEE J. Quantum Electron. QE-8, 632–641 (1972).
[CrossRef]

Przyklenk, K.

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm,” Opt. Commun. 130, 91–84 (1996).
[CrossRef]

San Miguel, M.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, and M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

Schuster, G. L.

Seppala, J.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Sharfin, W. F.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Shi, B. P.

Snipes Jr., M. B.

Y. Li, C. K. Wu, M. B. Snipes, Jr., and J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE 1634, 532–536 (1992).
[CrossRef]

Soltz, B. A.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Tunnermann, A.

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm,” Opt. Commun. 130, 91–84 (1996).
[CrossRef]

van Tartwijk, G. H. M.

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, and M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

Vollmer, B. J.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Wandt, D.

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm,” Opt. Commun. 130, 91–84 (1996).
[CrossRef]

Waters, R. G.

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

Welling, H.

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm,” Opt. Commun. 130, 91–84 (1996).
[CrossRef]

Willis, A. P.

Wu, C. K.

Y. Li, C. K. Wu, M. B. Snipes, Jr., and J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE 1634, 532–536 (1992).
[CrossRef]

Yang, S.

G. L. Abbas, S. Yang, V. W. S. Chan, and J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

W. F. Sharfin, J. Seppala, A. Mooradian, B. A. Soltz, R. G. Waters, B. J. Vollmer, and K. J. Bystrom, “High-power, diffraction-limited, narrow-band, external-cavity diode laser,” Appl. Phys. Lett. 54, 1731–1733 (1989).
[CrossRef]

L. Goldberg and M. K. Chun, “Injection locking characteristics of a 1-W broad stripe laser diode,” Appl. Phys. Lett. 53, 1900–1902 (1988).
[CrossRef]

J. R. Marciante and G. P. Agrawal, “Controlling filamentation in broad-area semiconductor lasers and amplifiers,” Appl. Phys. Lett. 69, 593–595 (1996).
[CrossRef]

P. Gavrilovic, A. V. Chelnokov, M. S. O’Neill, and D. M. Beyea, “Narrow-linewidth operation of broad-stripe single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

IEEE J. Quantum Electron. (3)

G. L. Abbas, S. Yang, V. W. S. Chan, and J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J. Quantum Electron. 24, 609–617 (1988).
[CrossRef]

E. M. Philipp-Rutz, “High-radiance room-temperature GaAs lasers with controlled radiation in a single transverse mode,” IEEE J. Quantum Electron. QE-8, 632–641 (1972).
[CrossRef]

R. J. Lang, A. G. Larsson, and J. G. Cody, “Lateral modes of broad area semiconductor lasers: theory and experiment,” IEEE J. Quantum Electron. 27, 312–320 (1991).
[CrossRef]

Opt. Commun. (1)

D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm,” Opt. Commun. 130, 91–84 (1996).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, and M. San Miguel, “Mode control and pattern stabilization in broad-area lasers by optical feedback,” Phys. Rev. A 54, 5386–5393 (1996).
[CrossRef] [PubMed]

Proc. SPIE (1)

Y. Li, C. K. Wu, M. B. Snipes, Jr., and J. G. McInerney, “Widely tunable, high power external cavity semiconductor lasers,” in Laser Diode Technology and Applications IV, D. S. Renner, ed., Proc. SPIE 1634, 532–536 (1992).
[CrossRef]

Other (4)

T. Day, M. Brownell, and I. F. Wu, “Widely tunable external cavity diode lasers,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 35–41 (1995).

P. Zorabedian, Tunable Lasers Handbook (Academic, New York, 1995), Chap. 8.

M. Muenkel, C. Simmendinger, and O. Hess, “Controlling temporal and spatio-temporal dynamics in semiconductorlasers by delayed optical feedback,” presented at the Society of Industrial and Applied Mathematics Conference, May 1997.

J. V. Moloney and D. Hochheiser, “Control of optical turbulence in high brightness semiconductor lasers,” presented at the Society of Industrial and Applied Mathematics Conference, May 1997.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Littman HPECL experimental setup: LD, 1-W laser diode (788 nm); L, collimating lens ( f = 4.5   mm ) ; M, high-reflectivity mirror (>99%). The VHTG has 900 grooves/mm.

Fig. 2
Fig. 2

(a) Power versus current of a HPECL with and without GF. (b) HPECL tunning range with power versus wavelength.

Fig. 3
Fig. 3

Optical spectra from the HPECL at 1.1 A, showing a 16-GHz (FWHM) bandwidth and mode spacing of ∼3.0 GHz.

Fig. 4
Fig. 4

SRNF comparison of a BAL in free-running mode versus GF for the following values of I / I th : (a) 0.9, (b) 1.0, (c) 1.1, (d) 1.5, (e) 2.0, (f) 3.0.

Fig. 5
Fig. 5

SRNF comparison of a BAL with GF at I / I th equals 0.9, 1.5 with tilting angles (a) +3°, (b) +2°, (c) +1°, (d) -1°, (e) -2°, (f) -3°.

Fig. 6
Fig. 6

Fabry–Perot model showing multiple-mode characteristics of a BAL with GF at different incident angles: L, laser cavity length (850 μm); W, laser emitting width (100 μm).

Fig. 7
Fig. 7

NF intensity patterns for untilted GF at I / I th = 0.9 , showing (a) mode structure and (b) dynamic behavior.

Fig. 8
Fig. 8

NF patterns and time series with and without GF at I / I th = 1.5 .

Fig. 9
Fig. 9

NF patterns and time series with and without GF at I / I th = 2.5 .

Fig. 10
Fig. 10

Comparison of the percent STD of intensity noise and the normalized current of a BAL with and without GF.

Metrics