Abstract

We consider several highly sensitive techniques commonly used in detection of atomic and molecular absorptions. Their basic operating principles and corresponding performances are summarized and compared. We then present our latest results on the ultrasensitive detection of molecular overtone transitions to illustrate the principle and application of the cavity-enhanced frequency-modulation (FM) spectroscopy. An external cavity is used to enhance the molecular response to the light field, and an FM technique is applied for shot-noise-limited signal recovery. A perfect match between the FM sideband frequency and the cavity free spectral range makes the detection process insensitive to the laser-frequency noise relative to the cavity, and, at the same time, overcomes the cavity bandwidth limit. Working with a 1.064-μm Nd:YAG laser, we obtained sub-Doppler overtone resonances of C2HD, C2H2, and CO2 molecules. A detection sensitivity of 5×10-13 of integrated absorption (1×10-14/cm) over 1-s averaging time has been achieved.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Hall, L. Hollberg, L.-S. Ma, T. Baer, and H. G. Robinson, “Progress toward phase-stable optical frequency standards,” J. Phys. (France) Colloq. 42, Suppl. 12, C8 59–71 (1981).
  2. See, for example, Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983).
  3. A. C. Tam, “Photothermal spectroscopy as a sensitive spectroscopic tool,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed.Proc. SPIE 1435, 114–127 (1991).
    [CrossRef]
  4. C. E. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976); M. D. Levenson and G. L. Eesley, “Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19, 1–17 (1979).
    [CrossRef]
  5. W. M. Fairbank, Jr., T. W. Hänsch, and A. L. Schawlow, “Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence,” J. Opt. Soc. Am. 65, 199–204 (1975).
    [CrossRef]
  6. W. Neuhauser, M. Hohenstatt, P. Toscheck, and H. Dehmelt, “Optical sideband cooling of visible atom cloud confined in parabolic well,” Phys. Rev. Lett. 41, 233–236 (1978).
    [CrossRef]
  7. D. J. Wineland, W. M. Itano, J. J. Bollinger, J. C. Bergquist, and H. Hemmati, “Spectroscopy of stored ions using fluorescence techniques,”, in Laser-Based Ultrasensitive Spectroscopy and Detection V, R. A. Keller, ed.Proc. SPIE 426, 65–70 (1983).
    [CrossRef]
  8. E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174, 553–557 (1990).
    [CrossRef]
  9. B. A. Bushaw, T. J. Whitaker, B. D. Cannon, and R. A. Warner, “Time-interval distribution and photon-burst-correlation spectroscopy of a strontium atomic beam,” J. Opt. Soc. Am. B 2, 1547–1553 (1985).
    [CrossRef]
  10. G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
    [CrossRef]
  11. G. D. Houser and E. Garmire, “Balanced detection technique to measure small changes in transmission,” Appl. Opt. 33, 1059–1062 (1994).
    [CrossRef] [PubMed]
  12. K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE 1435, 298–309 (1991).
    [CrossRef]
  13. J. Altmann, R. Baumgart, and C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
    [CrossRef] [PubMed]
  14. A. Kastler, “Atomes à l’intérieur d’un interféromètre Perot–Fabry,” Appl. Opt. 1, 17–24 (1962).
    [CrossRef]
  15. P. Cerez, A. Brillet, C. N. Man-Pichot, and R. Felder, “He–Ne lasers stabilized by saturated absorption in iodine at 612 nm,” IEEE Trans. Instrum. Meas. TIM-29, 352–354 (1980).
    [CrossRef]
  16. L.-S. Ma and J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
    [CrossRef]
  17. M. De Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
    [CrossRef] [PubMed]
  18. J. L. Hall and C. J. Bordé, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
    [CrossRef]
  19. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  20. D. Romanini and K. K. Lehmann, “Cavity ring-down overtone spectroscopy of HCN, H13CN, and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
    [CrossRef]
  21. T. W. Hänsch, A. L. Schawlow, and P. E. Toschek, “Ultrasensitive response of a cw dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
    [CrossRef]
  22. H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with a single-mode laser,” IEEE J. Quantum Electron. QE-16, 455–461 (1980).
    [CrossRef]
  23. V. M. Baev and P. E. Toschek, “Sensitivity limits of laser intracavity spectroscopy,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff and U. Platt, eds., Proc. SPIE 1715, 381–392 (1993).
    [CrossRef]
  24. H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961).
    [CrossRef]
  25. B. Smaller, “Precise determination of the magnetic moment of the deuteron,” Phys. Rev. 83, 812–820 (1951); R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17, 490–505 (1946).
    [CrossRef] [PubMed]
  26. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  27. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981); R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  28. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1525 (1985).
    [CrossRef]
  29. P. Werle, “Laser excess noise and interferometric effects in frequency-modulated diode-laser spectrometers,” Appl. Phys. B 60, 499–506 (1995).
    [CrossRef]
  30. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in FM spectroscopy: demonstration of shot-noise limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
    [CrossRef]
  31. L.-G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
    [CrossRef]
  32. D. R. Hjelme, S. Neegård, and E. Vartdal, “Optical interference fringe reduction in frequency-modulation spectroscopy experiments,” Opt. Lett. 20, 1731–1733 (1995).
    [CrossRef]
  33. G. R. Janik, C. B. Carlisle, and T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
    [CrossRef]
  34. G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
    [CrossRef]
  35. W. Zapka, M. D. Levenson, F. M. Schellenberg, A. C. Tam, and G. C. Bjorklund, “Continuous-wave Doppler-free two-photon frequency-modulation spectroscopy in Rb vapor,” Opt. Lett. 8, 27–29 (1983).
    [CrossRef] [PubMed]
  36. L. S. Ma, L. E. Ding, and Z. Y. Bi, “Doppler-free two-photon modulation transfer spectroscopy in sodium dimers,” Appl. Phys. B 51, 233–237 (1990).
    [CrossRef]
  37. G. J. Rosasco and W. S. Hurst, “Phase-modulated stimulated Raman spectroscopy,” J. Opt. Soc. Am. B 2, 1485–1496 (1985).
    [CrossRef]
  38. J. H. Shirley, “Modulation transfer process in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
    [CrossRef] [PubMed]
  39. J. Bialas, R. Blatt, W. Neuhauser, and P. E. Toschek, “Ultrasensitive detection of light absorption by few ions,” Opt. Commun. 59, 27–30 (1986).
    [CrossRef]
  40. J. Ye, L.-S. Ma, and J. L. Hall, “Ultra-stable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178 (1997); J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (University of Colorado at Boulder, Boulder, Colorado, 1997).
    [CrossRef]
  41. R. L. Smith, “Practical solutions of the lock-in detection problem for Lorentz and dispersion resonance signals,” J. Opt. Soc. Am. 61, 1015–1022 (1971).
    [CrossRef]
  42. J. L. Hall, J. Ye, L.-S. Ma, K. Vogel, and T. Dinneen, “Optical frequency standards: progress and applications,” in Laser Spectroscopy XIII, Y. Z. Wang, ed. (World Scientific, Singapore, 1997).
  43. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
    [CrossRef]
  44. P. Fritschel and R. Weiss, “Frequency match of the Nd:YAG laser at 1.064 μm with a line in CO2,” Appl. Opt. 31, 1910–1912 (1992).
    [CrossRef] [PubMed]
  45. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995); P. Jungner, M. Eickhoff, S. Swartz, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56) 32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151 (1995).
    [CrossRef]
  46. L. S. Rothman and L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide. II,” J. Quantum Spectrosc. Radiat. Transf. 25, 505–524 (1981).
    [CrossRef]
  47. U. J. Greiner and H. H. Klingerberg, “Thermal lens correction of a diode-pumped Nd:YAG laser of high TEM00 power by an adjustable-curvature mirror,” Opt. Lett. 19, 1207–1209 (1994).
    [CrossRef] [PubMed]
  48. M. Jacobson and R. W. Field, MIT, Cambridge, Mass. 02139 (private communications, 1996).
  49. M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, “Test of the symmetrization postulate for spin-0 particles,” Phys. Rev. Lett. 76, 2840–2843 (1996); R. C. Hilborn and C. L. Yuca, “Spectroscopic test of the symmetrization postulate for spin-0 nuclei,” Phys. Rev. Lett. 76, 2844–2847 (1996).
    [CrossRef] [PubMed]
  50. L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive FM spectroscopy enhanced by a high finesse optical cavity: application to overtone transitions of C2H2 & C2HD,” J. Opt. Soc. Am. B (to be published).

1995 (3)

D. Romanini and K. K. Lehmann, “Cavity ring-down overtone spectroscopy of HCN, H13CN, and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
[CrossRef]

P. Werle, “Laser excess noise and interferometric effects in frequency-modulated diode-laser spectrometers,” Appl. Phys. B 60, 499–506 (1995).
[CrossRef]

D. R. Hjelme, S. Neegård, and E. Vartdal, “Optical interference fringe reduction in frequency-modulation spectroscopy experiments,” Opt. Lett. 20, 1731–1733 (1995).
[CrossRef]

1994 (4)

1993 (1)

V. M. Baev and P. E. Toschek, “Sensitivity limits of laser intracavity spectroscopy,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff and U. Platt, eds., Proc. SPIE 1715, 381–392 (1993).
[CrossRef]

1992 (1)

1991 (2)

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

A. C. Tam, “Photothermal spectroscopy as a sensitive spectroscopic tool,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed.Proc. SPIE 1435, 114–127 (1991).
[CrossRef]

1990 (3)

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174, 553–557 (1990).
[CrossRef]

L.-S. Ma and J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
[CrossRef]

L. S. Ma, L. E. Ding, and Z. Y. Bi, “Doppler-free two-photon modulation transfer spectroscopy in sodium dimers,” Appl. Phys. B 51, 233–237 (1990).
[CrossRef]

1989 (1)

1988 (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1986 (2)

J. Bialas, R. Blatt, W. Neuhauser, and P. E. Toschek, “Ultrasensitive detection of light absorption by few ions,” Opt. Commun. 59, 27–30 (1986).
[CrossRef]

G. R. Janik, C. B. Carlisle, and T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
[CrossRef]

1985 (4)

1983 (2)

W. Zapka, M. D. Levenson, F. M. Schellenberg, A. C. Tam, and G. C. Bjorklund, “Continuous-wave Doppler-free two-photon frequency-modulation spectroscopy in Rb vapor,” Opt. Lett. 8, 27–29 (1983).
[CrossRef] [PubMed]

D. J. Wineland, W. M. Itano, J. J. Bollinger, J. C. Bergquist, and H. Hemmati, “Spectroscopy of stored ions using fluorescence techniques,”, in Laser-Based Ultrasensitive Spectroscopy and Detection V, R. A. Keller, ed.Proc. SPIE 426, 65–70 (1983).
[CrossRef]

1982 (1)

1981 (4)

J. Altmann, R. Baumgart, and C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
[CrossRef] [PubMed]

L. S. Rothman and L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide. II,” J. Quantum Spectrosc. Radiat. Transf. 25, 505–524 (1981).
[CrossRef]

J. L. Hall, L. Hollberg, L.-S. Ma, T. Baer, and H. G. Robinson, “Progress toward phase-stable optical frequency standards,” J. Phys. (France) Colloq. 42, Suppl. 12, C8 59–71 (1981).

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[CrossRef]

1980 (3)

P. Cerez, A. Brillet, C. N. Man-Pichot, and R. Felder, “He–Ne lasers stabilized by saturated absorption in iodine at 612 nm,” IEEE Trans. Instrum. Meas. TIM-29, 352–354 (1980).
[CrossRef]

H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with a single-mode laser,” IEEE J. Quantum Electron. QE-16, 455–461 (1980).
[CrossRef]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef] [PubMed]

1979 (1)

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

1978 (1)

W. Neuhauser, M. Hohenstatt, P. Toscheck, and H. Dehmelt, “Optical sideband cooling of visible atom cloud confined in parabolic well,” Phys. Rev. Lett. 41, 233–236 (1978).
[CrossRef]

1976 (1)

J. L. Hall and C. J. Bordé, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
[CrossRef]

1975 (1)

1972 (1)

T. W. Hänsch, A. L. Schawlow, and P. E. Toschek, “Ultrasensitive response of a cw dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
[CrossRef]

1971 (1)

1962 (1)

1961 (1)

H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961).
[CrossRef]

Altmann, J.

Baer, T.

J. L. Hall, L. Hollberg, L.-S. Ma, T. Baer, and H. G. Robinson, “Progress toward phase-stable optical frequency standards,” J. Phys. (France) Colloq. 42, Suppl. 12, C8 59–71 (1981).

Baev, V. M.

V. M. Baev and P. E. Toschek, “Sensitivity limits of laser intracavity spectroscopy,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff and U. Platt, eds., Proc. SPIE 1715, 381–392 (1993).
[CrossRef]

Baumgart, R.

Bergquist, J. C.

D. J. Wineland, W. M. Itano, J. J. Bollinger, J. C. Bergquist, and H. Hemmati, “Spectroscopy of stored ions using fluorescence techniques,”, in Laser-Based Ultrasensitive Spectroscopy and Detection V, R. A. Keller, ed.Proc. SPIE 426, 65–70 (1983).
[CrossRef]

Bi, Z. Y.

L. S. Ma, L. E. Ding, and Z. Y. Bi, “Doppler-free two-photon modulation transfer spectroscopy in sodium dimers,” Appl. Phys. B 51, 233–237 (1990).
[CrossRef]

Bialas, J.

J. Bialas, R. Blatt, W. Neuhauser, and P. E. Toschek, “Ultrasensitive detection of light absorption by few ions,” Opt. Commun. 59, 27–30 (1986).
[CrossRef]

Bjorklund, G. C.

Blatt, R.

J. Bialas, R. Blatt, W. Neuhauser, and P. E. Toschek, “Ultrasensitive detection of light absorption by few ions,” Opt. Commun. 59, 27–30 (1986).
[CrossRef]

Bollinger, J. J.

D. J. Wineland, W. M. Itano, J. J. Bollinger, J. C. Bergquist, and H. Hemmati, “Spectroscopy of stored ions using fluorescence techniques,”, in Laser-Based Ultrasensitive Spectroscopy and Detection V, R. A. Keller, ed.Proc. SPIE 426, 65–70 (1983).
[CrossRef]

Bordé, C. J.

J. L. Hall and C. J. Bordé, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
[CrossRef]

Brillet, A.

P. Cerez, A. Brillet, C. N. Man-Pichot, and R. Felder, “He–Ne lasers stabilized by saturated absorption in iodine at 612 nm,” IEEE Trans. Instrum. Meas. TIM-29, 352–354 (1980).
[CrossRef]

Bushaw, B. A.

Cannon, B. D.

Carlisle, C. B.

Cerez, P.

P. Cerez, A. Brillet, C. N. Man-Pichot, and R. Felder, “He–Ne lasers stabilized by saturated absorption in iodine at 612 nm,” IEEE Trans. Instrum. Meas. TIM-29, 352–354 (1980).
[CrossRef]

Davis, L. M.

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174, 553–557 (1990).
[CrossRef]

de Labachelerie, M.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

M. De Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[CrossRef] [PubMed]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Dehmelt, H.

W. Neuhauser, M. Hohenstatt, P. Toscheck, and H. Dehmelt, “Optical sideband cooling of visible atom cloud confined in parabolic well,” Phys. Rev. Lett. 41, 233–236 (1978).
[CrossRef]

Ding, L. E.

L. S. Ma, L. E. Ding, and Z. Y. Bi, “Doppler-free two-photon modulation transfer spectroscopy in sodium dimers,” Appl. Phys. B 51, 233–237 (1990).
[CrossRef]

Fairbank Jr., W. M.

Felder, R.

P. Cerez, A. Brillet, C. N. Man-Pichot, and R. Felder, “He–Ne lasers stabilized by saturated absorption in iodine at 612 nm,” IEEE Trans. Instrum. Meas. TIM-29, 352–354 (1980).
[CrossRef]

Fritschel, P.

Gallagher, T. F.

Garmire, E.

Gehrtz, M.

Greiner, U. J.

Hall, J. L.

L.-S. Ma and J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
[CrossRef]

N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in FM spectroscopy: demonstration of shot-noise limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
[CrossRef]

J. L. Hall, L. Hollberg, L.-S. Ma, T. Baer, and H. G. Robinson, “Progress toward phase-stable optical frequency standards,” J. Phys. (France) Colloq. 42, Suppl. 12, C8 59–71 (1981).

J. L. Hall and C. J. Bordé, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
[CrossRef]

Haller, K. L.

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

Hänsch, T. W.

W. M. Fairbank, Jr., T. W. Hänsch, and A. L. Schawlow, “Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence,” J. Opt. Soc. Am. 65, 199–204 (1975).
[CrossRef]

T. W. Hänsch, A. L. Schawlow, and P. E. Toschek, “Ultrasensitive response of a cw dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
[CrossRef]

Hemmati, H.

D. J. Wineland, W. M. Itano, J. J. Bollinger, J. C. Bergquist, and H. Hemmati, “Spectroscopy of stored ions using fluorescence techniques,”, in Laser-Based Ultrasensitive Spectroscopy and Detection V, R. A. Keller, ed.Proc. SPIE 426, 65–70 (1983).
[CrossRef]

Hjelme, D. R.

Hobbs, P. C. D.

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

Hohenstatt, M.

W. Neuhauser, M. Hohenstatt, P. Toscheck, and H. Dehmelt, “Optical sideband cooling of visible atom cloud confined in parabolic well,” Phys. Rev. Lett. 41, 233–236 (1978).
[CrossRef]

Hollberg, L.

J. L. Hall, L. Hollberg, L.-S. Ma, T. Baer, and H. G. Robinson, “Progress toward phase-stable optical frequency standards,” J. Phys. (France) Colloq. 42, Suppl. 12, C8 59–71 (1981).

Houser, G. D.

Hurst, G. S.

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Hurst, W. S.

Itano, W. M.

D. J. Wineland, W. M. Itano, J. J. Bollinger, J. C. Bergquist, and H. Hemmati, “Spectroscopy of stored ions using fluorescence techniques,”, in Laser-Based Ultrasensitive Spectroscopy and Detection V, R. A. Keller, ed.Proc. SPIE 426, 65–70 (1983).
[CrossRef]

Janik, G. R.

Kastler, A.

Katsuda, T.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Keller, R. A.

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174, 553–557 (1990).
[CrossRef]

Kimble, H. J.

H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with a single-mode laser,” IEEE J. Quantum Electron. QE-16, 455–461 (1980).
[CrossRef]

Klingerberg, H. H.

Kramer, S. D.

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Lehmann, K. K.

D. Romanini and K. K. Lehmann, “Cavity ring-down overtone spectroscopy of HCN, H13CN, and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
[CrossRef]

Levenson, M. D.

Ma, L. S.

L. S. Ma, L. E. Ding, and Z. Y. Bi, “Doppler-free two-photon modulation transfer spectroscopy in sodium dimers,” Appl. Phys. B 51, 233–237 (1990).
[CrossRef]

Ma, L.-S.

L.-S. Ma and J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
[CrossRef]

J. L. Hall, L. Hollberg, L.-S. Ma, T. Baer, and H. G. Robinson, “Progress toward phase-stable optical frequency standards,” J. Phys. (France) Colloq. 42, Suppl. 12, C8 59–71 (1981).

Man-Pichot, C. N.

P. Cerez, A. Brillet, C. N. Man-Pichot, and R. Felder, “He–Ne lasers stabilized by saturated absorption in iodine at 612 nm,” IEEE Trans. Instrum. Meas. TIM-29, 352–354 (1980).
[CrossRef]

Nakagawa, K.

M. De Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[CrossRef] [PubMed]

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Neegård, S.

Neuhauser, W.

J. Bialas, R. Blatt, W. Neuhauser, and P. E. Toschek, “Ultrasensitive detection of light absorption by few ions,” Opt. Commun. 59, 27–30 (1986).
[CrossRef]

W. Neuhauser, M. Hohenstatt, P. Toscheck, and H. Dehmelt, “Optical sideband cooling of visible atom cloud confined in parabolic well,” Phys. Rev. Lett. 41, 233–236 (1978).
[CrossRef]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Ohtsu, M.

M. De Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[CrossRef] [PubMed]

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Payne, M. G.

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Riris, H.

Robinson, H. G.

J. L. Hall, L. Hollberg, L.-S. Ma, T. Baer, and H. G. Robinson, “Progress toward phase-stable optical frequency standards,” J. Phys. (France) Colloq. 42, Suppl. 12, C8 59–71 (1981).

Romanini, D.

D. Romanini and K. K. Lehmann, “Cavity ring-down overtone spectroscopy of HCN, H13CN, and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
[CrossRef]

Rosasco, G. J.

Rothman, L. S.

L. S. Rothman and L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide. II,” J. Quantum Spectrosc. Radiat. Transf. 25, 505–524 (1981).
[CrossRef]

Schawlow, A. L.

W. M. Fairbank, Jr., T. W. Hänsch, and A. L. Schawlow, “Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence,” J. Opt. Soc. Am. 65, 199–204 (1975).
[CrossRef]

T. W. Hänsch, A. L. Schawlow, and P. E. Toschek, “Ultrasensitive response of a cw dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
[CrossRef]

Schellenberg, F. M.

Seitzinger, N. K.

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174, 553–557 (1990).
[CrossRef]

Shelkovnikov, A. S.

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

Shera, E. B.

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174, 553–557 (1990).
[CrossRef]

Shirley, J. H.

Smith, R. L.

Soper, S. A.

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174, 553–557 (1990).
[CrossRef]

Tam, A. C.

A. C. Tam, “Photothermal spectroscopy as a sensitive spectroscopic tool,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed.Proc. SPIE 1435, 114–127 (1991).
[CrossRef]

W. Zapka, M. D. Levenson, F. M. Schellenberg, A. C. Tam, and G. C. Bjorklund, “Continuous-wave Doppler-free two-photon frequency-modulation spectroscopy in Rb vapor,” Opt. Lett. 8, 27–29 (1983).
[CrossRef] [PubMed]

Tate, D. A.

Toscheck, P.

W. Neuhauser, M. Hohenstatt, P. Toscheck, and H. Dehmelt, “Optical sideband cooling of visible atom cloud confined in parabolic well,” Phys. Rev. Lett. 41, 233–236 (1978).
[CrossRef]

Toschek, P. E.

V. M. Baev and P. E. Toschek, “Sensitivity limits of laser intracavity spectroscopy,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff and U. Platt, eds., Proc. SPIE 1715, 381–392 (1993).
[CrossRef]

J. Bialas, R. Blatt, W. Neuhauser, and P. E. Toschek, “Ultrasensitive detection of light absorption by few ions,” Opt. Commun. 59, 27–30 (1986).
[CrossRef]

T. W. Hänsch, A. L. Schawlow, and P. E. Toschek, “Ultrasensitive response of a cw dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
[CrossRef]

Vartdal, E.

Wahlquist, H.

H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961).
[CrossRef]

Wang, L.-G.

Warner, R. A.

Weiss, R.

Weitkamp, C.

Werle, P.

P. Werle, “Laser excess noise and interferometric effects in frequency-modulated diode-laser spectrometers,” Appl. Phys. B 60, 499–506 (1995).
[CrossRef]

Whitaker, T. J.

Whittaker, E. A.

Wineland, D. J.

D. J. Wineland, W. M. Itano, J. J. Bollinger, J. C. Bergquist, and H. Hemmati, “Spectroscopy of stored ions using fluorescence techniques,”, in Laser-Based Ultrasensitive Spectroscopy and Detection V, R. A. Keller, ed.Proc. SPIE 426, 65–70 (1983).
[CrossRef]

Wong, N. C.

Young, J. P.

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Young, L. D. G.

L. S. Rothman and L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide. II,” J. Quantum Spectrosc. Radiat. Transf. 25, 505–524 (1981).
[CrossRef]

Zapka, W.

Appl. Opt. (4)

Appl. Phys. B (2)

P. Werle, “Laser excess noise and interferometric effects in frequency-modulated diode-laser spectrometers,” Appl. Phys. B 60, 499–506 (1995).
[CrossRef]

L. S. Ma, L. E. Ding, and Z. Y. Bi, “Doppler-free two-photon modulation transfer spectroscopy in sodium dimers,” Appl. Phys. B 51, 233–237 (1990).
[CrossRef]

Appl. Phys. Lett. (1)

J. L. Hall and C. J. Bordé, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave fronts,” Appl. Phys. Lett. 29, 788–790 (1976).
[CrossRef]

Chem. Phys. Lett. (1)

E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, and S. A. Soper, “Detection of single fluorescent molecules,” Chem. Phys. Lett. 174, 553–557 (1990).
[CrossRef]

IEEE J. Quantum Electron. (3)

T. W. Hänsch, A. L. Schawlow, and P. E. Toschek, “Ultrasensitive response of a cw dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
[CrossRef]

H. J. Kimble, “Calculated enhancement for intracavity spectroscopy with a single-mode laser,” IEEE J. Quantum Electron. QE-16, 455–461 (1980).
[CrossRef]

L.-S. Ma and J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

P. Cerez, A. Brillet, C. N. Man-Pichot, and R. Felder, “He–Ne lasers stabilized by saturated absorption in iodine at 612 nm,” IEEE Trans. Instrum. Meas. TIM-29, 352–354 (1980).
[CrossRef]

J. Chem. Phys. (2)

D. Romanini and K. K. Lehmann, “Cavity ring-down overtone spectroscopy of HCN, H13CN, and HC15N,” J. Chem. Phys. 102, 633–642 (1995).
[CrossRef]

H. Wahlquist, “Modulation broadening of unsaturated Lorentzian lines,” J. Chem. Phys. 35, 1708–1710 (1961).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (6)

J. Phys. (France) Colloq. (1)

J. L. Hall, L. Hollberg, L.-S. Ma, T. Baer, and H. G. Robinson, “Progress toward phase-stable optical frequency standards,” J. Phys. (France) Colloq. 42, Suppl. 12, C8 59–71 (1981).

J. Quantum Spectrosc. Radiat. Transf. (1)

L. S. Rothman and L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide. II,” J. Quantum Spectrosc. Radiat. Transf. 25, 505–524 (1981).
[CrossRef]

Opt. Commun. (2)

K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
[CrossRef]

J. Bialas, R. Blatt, W. Neuhauser, and P. E. Toschek, “Ultrasensitive detection of light absorption by few ions,” Opt. Commun. 59, 27–30 (1986).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (1)

G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981).
[CrossRef]

Phys. Rev. Lett. (1)

W. Neuhauser, M. Hohenstatt, P. Toscheck, and H. Dehmelt, “Optical sideband cooling of visible atom cloud confined in parabolic well,” Phys. Rev. Lett. 41, 233–236 (1978).
[CrossRef]

Proc. SPIE (4)

D. J. Wineland, W. M. Itano, J. J. Bollinger, J. C. Bergquist, and H. Hemmati, “Spectroscopy of stored ions using fluorescence techniques,”, in Laser-Based Ultrasensitive Spectroscopy and Detection V, R. A. Keller, ed.Proc. SPIE 426, 65–70 (1983).
[CrossRef]

A. C. Tam, “Photothermal spectroscopy as a sensitive spectroscopic tool,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed.Proc. SPIE 1435, 114–127 (1991).
[CrossRef]

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

V. M. Baev and P. E. Toschek, “Sensitivity limits of laser intracavity spectroscopy,” in Optical Methods in Atmospheric Chemistry, H. I. Schiff and U. Platt, eds., Proc. SPIE 1715, 381–392 (1993).
[CrossRef]

Rev. Mod. Phys. (1)

G. S. Hurst, M. G. Payne, S. D. Kramer, and J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Rev. Sci. Instrum. (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Other (10)

C. E. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976); M. D. Levenson and G. L. Eesley, “Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19, 1–17 (1979).
[CrossRef]

See, for example, Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983).

B. Smaller, “Precise determination of the magnetic moment of the deuteron,” Phys. Rev. 83, 812–820 (1951); R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17, 490–505 (1946).
[CrossRef] [PubMed]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981); R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

J. Ye, L.-S. Ma, and J. L. Hall, “Ultra-stable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178 (1997); J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (University of Colorado at Boulder, Boulder, Colorado, 1997).
[CrossRef]

J. L. Hall, J. Ye, L.-S. Ma, K. Vogel, and T. Dinneen, “Optical frequency standards: progress and applications,” in Laser Spectroscopy XIII, Y. Z. Wang, ed. (World Scientific, Singapore, 1997).

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995); P. Jungner, M. Eickhoff, S. Swartz, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56) 32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151 (1995).
[CrossRef]

M. Jacobson and R. W. Field, MIT, Cambridge, Mass. 02139 (private communications, 1996).

M. de Angelis, G. Gagliardi, L. Gianfrani, and G. M. Tino, “Test of the symmetrization postulate for spin-0 particles,” Phys. Rev. Lett. 76, 2840–2843 (1996); R. C. Hilborn and C. L. Yuca, “Spectroscopic test of the symmetrization postulate for spin-0 nuclei,” Phys. Rev. Lett. 76, 2844–2847 (1996).
[CrossRef] [PubMed]

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive FM spectroscopy enhanced by a high finesse optical cavity: application to overtone transitions of C2H2 & C2HD,” J. Opt. Soc. Am. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical spectrum and the detection principle for NICE-OHMS.

Fig. 2
Fig. 2

General experimental schematic for the NICE-OHMS spectrometer.

Fig. 3
Fig. 3

Demonstration of the noise-immune property of NICE-OHMS. The C2HD (ν2+3ν3)P(5) resonance signal is recovered by both cavity-dither lock-in (DC) detection and the NICE-OHMS technique, under the experimental conditions of a tight laser/cavity lock (left column) and a substantially deteriorated lock (right column).

Fig. 4
Fig. 4

Sensitivity measurement of the NICE-OHMS technique. The upper graph shows the level of the saturated absorption, while the lower graph shows the corresponding S/N obtained via NICE-OHMS. The noise-equivalent detection sensitivities (normalized to 1-s time constant) are 3×10-11 for cavity-dither detection and 5.2×10-13 for NICE-OHMS.

Fig. 5
Fig. 5

Line-shape comparison among the resonances of (a) CO2, (b) C2HD, and (c) C2H2, under the same experimental conditions.

Fig. 6
Fig. 6

Pressure-dependent linewidth changes for both CO2 resonances. The negative-going peak has a zero-pressure extrapolated linewidth of 100 kHz, half the value of the transit time broadening. These aspects lead us to tentatively identify this feature as arising from two-photon absorption.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(αL)min=2eBηP01/2,
(αL)min=2eBηP01/2 2J0(β)J1(β),
(αL)min=π2×finesse 2eBηP01/2 2J0(β)J1(β).

Metrics