Abstract

Tetracarboxylic dianhydride containing the second-order nonlinear optical chromophore thiophene-type stilbene with diethylamino and tricyanoethenyl substituents on each terminal was newly synthesized. Polyamic acid prepared from the tetracarboxylic dianhydride and N, N-diaminodiphenyl ether was soluble in aprotic polar solvents and had an inherent viscosity of 0.2 dL/g. Polyimide obtained by heating of the polyamic acid at 160 °C was thermally stable to 240 °C. Polyimide Langmuir–Blodgett (LB) films were prepared by the precursor method through polyamic acid alkyl amine salts (the precursor of polyimide) with three kinds of alkyl amine. The precursor LB film had a Y-type structure and a good linear relationship between thickness and absorption at 650 nm in both precursor and polyimide LB films. Fourier-transform IR spectra before and after imidization indicated that the nonlinear optical chromophore remained in the polyimide LB film. It was found from the observation of transmission UV–visible spectra that the nonlinear optical chromophore was oriented more nearly perpendicularly in polyimide LB film than in the precursor LB film.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Brèdas and F. Meyers, “Heresy in the world of organic nonlinear optics,” Nature 375, 362–363 (1995).
    [CrossRef]
  2. L.-Y. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian motion of chromophores and electric field effects in polymer films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
    [CrossRef]
  3. P. N. Presad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  4. D. J. Williams, ed., Nonlinear Optical Properties of Organic Molecules and Polymeric Materials, ACS Symp. Ser. 233 (American Chemical Society, Washington, D.C., 1983).
  5. J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031–1033 (1988).
    [CrossRef]
  6. S. Yang, Z. Peng, and L. Yu, “Functionalized polyimides exhibiting large and stable second-order optical nonlinearity,” Macromolecules 27, 5858–5862 (1994).
    [CrossRef]
  7. C. E. Scoog, “Polyimides,” J. Polym. Sci. Macromol. Rev. 11, 161–208 (1976).
  8. T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
    [CrossRef] [PubMed]
  9. K. Feng, T. Matsumoto, and T. Kurosaki, “Photosensitive polyimides with 2-nitro-p-xylylene structure,” J. Photopolymer Sci. Technol. 9, 347–354 (1996).
    [CrossRef]
  10. D. Yu and L. Yu, “Design and synthesis of functionalized polyimides for second-order nonlinear optics,” Macromolecules 27, 6718–6721 (1994).
    [CrossRef]
  11. V. Pushkara Rao, A. K.-Y. Jen, K. Y. Wong, and K. J. Drost, “Dramatically enhanced second-order nonlinear optical susceptibilities in tricyanovinylthiophene derivatives,” Chem. Commun. 7(14), 1118–1120 (1993).
  12. M. Kakimoto, M. Suzuki, T. Konishi, Y. Imai, M. Iwamoto, and T. Hino, “Preparation of mono- and multilayer films of aromatic polyimides using the Langmuir–Blodgett technique,” Chem. Lett. 823–826 (1986).
    [CrossRef]

1996 (1)

K. Feng, T. Matsumoto, and T. Kurosaki, “Photosensitive polyimides with 2-nitro-p-xylylene structure,” J. Photopolymer Sci. Technol. 9, 347–354 (1996).
[CrossRef]

1995 (2)

J. L. Brèdas and F. Meyers, “Heresy in the world of organic nonlinear optics,” Nature 375, 362–363 (1995).
[CrossRef]

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[CrossRef] [PubMed]

1994 (3)

S. Yang, Z. Peng, and L. Yu, “Functionalized polyimides exhibiting large and stable second-order optical nonlinearity,” Macromolecules 27, 5858–5862 (1994).
[CrossRef]

L.-Y. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian motion of chromophores and electric field effects in polymer films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
[CrossRef]

D. Yu and L. Yu, “Design and synthesis of functionalized polyimides for second-order nonlinear optics,” Macromolecules 27, 6718–6721 (1994).
[CrossRef]

1988 (1)

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031–1033 (1988).
[CrossRef]

1986 (1)

M. Kakimoto, M. Suzuki, T. Konishi, Y. Imai, M. Iwamoto, and T. Hino, “Preparation of mono- and multilayer films of aromatic polyimides using the Langmuir–Blodgett technique,” Chem. Lett. 823–826 (1986).
[CrossRef]

Brèdas, J. L.

J. L. Brèdas and F. Meyers, “Heresy in the world of organic nonlinear optics,” Nature 375, 362–363 (1995).
[CrossRef]

Burland, D. M.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[CrossRef] [PubMed]

Feng, K.

K. Feng, T. Matsumoto, and T. Kurosaki, “Photosensitive polyimides with 2-nitro-p-xylylene structure,” J. Photopolymer Sci. Technol. 9, 347–354 (1996).
[CrossRef]

Hino, T.

M. Kakimoto, M. Suzuki, T. Konishi, Y. Imai, M. Iwamoto, and T. Hino, “Preparation of mono- and multilayer films of aromatic polyimides using the Langmuir–Blodgett technique,” Chem. Lett. 823–826 (1986).
[CrossRef]

Imai, Y.

M. Kakimoto, M. Suzuki, T. Konishi, Y. Imai, M. Iwamoto, and T. Hino, “Preparation of mono- and multilayer films of aromatic polyimides using the Langmuir–Blodgett technique,” Chem. Lett. 823–826 (1986).
[CrossRef]

Iwamoto, M.

M. Kakimoto, M. Suzuki, T. Konishi, Y. Imai, M. Iwamoto, and T. Hino, “Preparation of mono- and multilayer films of aromatic polyimides using the Langmuir–Blodgett technique,” Chem. Lett. 823–826 (1986).
[CrossRef]

Jurich, M. C.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[CrossRef] [PubMed]

Kakimoto, M.

M. Kakimoto, M. Suzuki, T. Konishi, Y. Imai, M. Iwamoto, and T. Hino, “Preparation of mono- and multilayer films of aromatic polyimides using the Langmuir–Blodgett technique,” Chem. Lett. 823–826 (1986).
[CrossRef]

Konishi, T.

M. Kakimoto, M. Suzuki, T. Konishi, Y. Imai, M. Iwamoto, and T. Hino, “Preparation of mono- and multilayer films of aromatic polyimides using the Langmuir–Blodgett technique,” Chem. Lett. 823–826 (1986).
[CrossRef]

Kurosaki, T.

K. Feng, T. Matsumoto, and T. Kurosaki, “Photosensitive polyimides with 2-nitro-p-xylylene structure,” J. Photopolymer Sci. Technol. 9, 347–354 (1996).
[CrossRef]

Lackritz, H. S.

L.-Y. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian motion of chromophores and electric field effects in polymer films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
[CrossRef]

Lee, V. Y.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[CrossRef] [PubMed]

Lipscomb, G. F.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031–1033 (1988).
[CrossRef]

Liu, L.-Y.

L.-Y. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian motion of chromophores and electric field effects in polymer films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
[CrossRef]

Lytel, R.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031–1033 (1988).
[CrossRef]

Matsumoto, T.

K. Feng, T. Matsumoto, and T. Kurosaki, “Photosensitive polyimides with 2-nitro-p-xylylene structure,” J. Photopolymer Sci. Technol. 9, 347–354 (1996).
[CrossRef]

Meyers, F.

J. L. Brèdas and F. Meyers, “Heresy in the world of organic nonlinear optics,” Nature 375, 362–363 (1995).
[CrossRef]

Miller, R. D.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[CrossRef] [PubMed]

Peng, Z.

S. Yang, Z. Peng, and L. Yu, “Functionalized polyimides exhibiting large and stable second-order optical nonlinearity,” Macromolecules 27, 5858–5862 (1994).
[CrossRef]

Ramkrishna, D.

L.-Y. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian motion of chromophores and electric field effects in polymer films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
[CrossRef]

Stiller, M. A.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031–1033 (1988).
[CrossRef]

Suzuki, M.

M. Kakimoto, M. Suzuki, T. Konishi, Y. Imai, M. Iwamoto, and T. Hino, “Preparation of mono- and multilayer films of aromatic polyimides using the Langmuir–Blodgett technique,” Chem. Lett. 823–826 (1986).
[CrossRef]

Thackara, J. I.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031–1033 (1988).
[CrossRef]

Ticknor, A. J.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031–1033 (1988).
[CrossRef]

Verbiest, T.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[CrossRef] [PubMed]

Volksen, W.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[CrossRef] [PubMed]

Yang, S.

S. Yang, Z. Peng, and L. Yu, “Functionalized polyimides exhibiting large and stable second-order optical nonlinearity,” Macromolecules 27, 5858–5862 (1994).
[CrossRef]

Yu, D.

D. Yu and L. Yu, “Design and synthesis of functionalized polyimides for second-order nonlinear optics,” Macromolecules 27, 6718–6721 (1994).
[CrossRef]

Yu, L.

D. Yu and L. Yu, “Design and synthesis of functionalized polyimides for second-order nonlinear optics,” Macromolecules 27, 6718–6721 (1994).
[CrossRef]

S. Yang, Z. Peng, and L. Yu, “Functionalized polyimides exhibiting large and stable second-order optical nonlinearity,” Macromolecules 27, 5858–5862 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031–1033 (1988).
[CrossRef]

Chem. Lett. (1)

M. Kakimoto, M. Suzuki, T. Konishi, Y. Imai, M. Iwamoto, and T. Hino, “Preparation of mono- and multilayer films of aromatic polyimides using the Langmuir–Blodgett technique,” Chem. Lett. 823–826 (1986).
[CrossRef]

J. Photopolymer Sci. Technol. (1)

K. Feng, T. Matsumoto, and T. Kurosaki, “Photosensitive polyimides with 2-nitro-p-xylylene structure,” J. Photopolymer Sci. Technol. 9, 347–354 (1996).
[CrossRef]

Macromolecules (3)

D. Yu and L. Yu, “Design and synthesis of functionalized polyimides for second-order nonlinear optics,” Macromolecules 27, 6718–6721 (1994).
[CrossRef]

S. Yang, Z. Peng, and L. Yu, “Functionalized polyimides exhibiting large and stable second-order optical nonlinearity,” Macromolecules 27, 5858–5862 (1994).
[CrossRef]

L.-Y. Liu, D. Ramkrishna, and H. S. Lackritz, “Rotational Brownian motion of chromophores and electric field effects in polymer films for second-order nonlinear optics,” Macromolecules 27, 5987–5999 (1994).
[CrossRef]

Nature (1)

J. L. Brèdas and F. Meyers, “Heresy in the world of organic nonlinear optics,” Nature 375, 362–363 (1995).
[CrossRef]

Science (1)

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[CrossRef] [PubMed]

Other (4)

V. Pushkara Rao, A. K.-Y. Jen, K. Y. Wong, and K. J. Drost, “Dramatically enhanced second-order nonlinear optical susceptibilities in tricyanovinylthiophene derivatives,” Chem. Commun. 7(14), 1118–1120 (1993).

P. N. Presad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

D. J. Williams, ed., Nonlinear Optical Properties of Organic Molecules and Polymeric Materials, ACS Symp. Ser. 233 (American Chemical Society, Washington, D.C., 1983).

C. E. Scoog, “Polyimides,” J. Polym. Sci. Macromol. Rev. 11, 161–208 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Synthetic route of polyamic acid with a NLO chromophore as a side chain.

Fig. 2
Fig. 2

Preparation of polyimide LB films by the precursor method.

Fig. 3
Fig. 3

Thermogravimetric analysis traces of polyamic acid and polyimide (heating rate, 10 °C/min).

Fig. 4
Fig. 4

π–A curves of polyamic acid salts formed by mixing polyamic acid and various alkyl amines: spreading from 0.33 mmol/L in DMAc:benzene (1:1).

Fig. 5
Fig. 5

FTIR transmission spectra of the LB films of (A) polyamic acid and (B) polyimide: 21-monolayer LB films upon a calcium fluoride plate.  

Fig. 6
Fig. 6

Relation of the absorbance at λmax=650 nm to the number of polyamic acid and polyimide LB film layers (surface pressure, 25 mN/m).

Fig. 7
Fig. 7

Change in UV–visible spectra of the LB films before and after heat treatment (11 monolayers upon a quartz plate).  

Tables (1)

Tables Icon

Table 1 Assignments of the Absorption Bands of FTIR Transmission Spectroscopy

Metrics