Abstract

We show, for the first time to our knowledge, that highly nonlinear optically active as well as orientationally optimized crystalline materials for second-order nonlinear optics can be prepared by a proper design of short hydrogen-bonded molecular aggregates derived from a specially developed merocyanine dye. One of the cocrystals is shown to be a very useful and highly efficient crystalline material for electro-optic devices because of the perfect chromophoric orientation, the large electro-optic coefficient r111=30±3 pm/V at λ=1535 nm, and the greatly improved physical properties such as higher melting point and crystal properties such as crystallinity. In addition, we demonstrate that one can vary or tune the linear and nonlinear optical properties of this cocrystal without modifying the chromophoric orientation in the crystal lattice by changing the crystal growth conditions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ch. Bosshard, K. Sutter, Ph. Pretre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, in Organic Nonlinear Optical Materials, A. F. Garito and F. Kajzar, eds., Vol. 1 of Advances in Nonlinear Optics (Gordon & Breach, Basel, Switzerland, 1995).
  2. J. F. Nicoud and R. J. Twieg, “Design and synthesis of organic molecular compounds for efficient second-harmonic generation,” in Nonlinear Optical Properties of Organic Molecules and Crystals I, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), pp. 227–296.
  3. L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
    [CrossRef]
  4. L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10653 (1991).
    [CrossRef]
  5. W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-Methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
    [CrossRef]
  6. S. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Sindhoj, “Large first hyperpolarizability in push–pull polyenes by tuning of the bond length alternation and aromaticity,” Science 263, 511–514 (1994).
    [CrossRef] [PubMed]
  7. M. S. Wong, C. Bosshard, F. Pan, and P. Günter, “Non-classical donor–acceptor chromophores for second-order nonlinear optics,” Adv. Mater. 8, 677–680 (1996).
    [CrossRef]
  8. M. S. Wong, U. Meier, F. Pan, C. Bosshard, V. Gramlich, and P. Günter, “Five-membered heteroaromatic hydrazone derivatives for second-order nonlinear optics,” Adv. Mater. 8, 416–420 (1996).
    [CrossRef]
  9. F. Pan, M. S. Wong, V. Gramlich, C. Bosshard, and P. Günter, “Crystal engineering based on short hydrogen bonds—co-crystallization of a highly nonlinear optical merocyanine dye with nitrophenol derivatives,” Chem. Commun. 1996, 557–1558 (1996).
  10. M. S. Wong, F. Pan, V. Gramlich, C. Bosshard, and P. Günter, “Self-assembly of acentric co-crystal of a highly hyperpolarizable merocyanine dye with optimized alignment for nonlinear optics,” Adv. Mater. 9, 554–557 (1997).
    [CrossRef]
  11. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
    [CrossRef]
  12. M. S. Shumate, “Interferometric measurement of large indices of refraction,” Appl. Opt. 5, 327–331 (1966).
    [CrossRef] [PubMed]
  13. S. Follonier, Ch. Bosshard, U. Meier, G. Knöpfle, C. Serbutoviez, F. Pan, and P. Günter, “New nonlinear optical organic crystal: 4-dimethyl-aminobenzaldehyde-4-nitrophenyl-hydrazone,” J. Opt. Soc. Am. B 14, 593–601 (1997).
    [CrossRef]
  14. J. Jerphagnon and S. K. Kurtz, “Maker fringes: detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
    [CrossRef]
  15. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
    [CrossRef]
  16. R. C. Miller, “Optical second-harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
    [CrossRef]
  17. S. Kurtz, J. Jerphagnon, and M. M. Choy, “Nonlinear dielectric susceptibilities,” in Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystals, Vol. III/11 of Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, K.-H. Hellwege and A. M. Hellwege, eds. (Springer-Verlag, Berlin, 1979), Chap. 6, pp. 671–743. For the nonlinear optical susceptibility d11 of quartz we used the arithmetic average of the different values reported in this reference.
  18. J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatics,” J. Chem. Phys. 67, 446–457 (1977).
    [CrossRef]

1997 (2)

M. S. Wong, F. Pan, V. Gramlich, C. Bosshard, and P. Günter, “Self-assembly of acentric co-crystal of a highly hyperpolarizable merocyanine dye with optimized alignment for nonlinear optics,” Adv. Mater. 9, 554–557 (1997).
[CrossRef]

S. Follonier, Ch. Bosshard, U. Meier, G. Knöpfle, C. Serbutoviez, F. Pan, and P. Günter, “New nonlinear optical organic crystal: 4-dimethyl-aminobenzaldehyde-4-nitrophenyl-hydrazone,” J. Opt. Soc. Am. B 14, 593–601 (1997).
[CrossRef]

1996 (3)

M. S. Wong, C. Bosshard, F. Pan, and P. Günter, “Non-classical donor–acceptor chromophores for second-order nonlinear optics,” Adv. Mater. 8, 677–680 (1996).
[CrossRef]

M. S. Wong, U. Meier, F. Pan, C. Bosshard, V. Gramlich, and P. Günter, “Five-membered heteroaromatic hydrazone derivatives for second-order nonlinear optics,” Adv. Mater. 8, 416–420 (1996).
[CrossRef]

F. Pan, M. S. Wong, V. Gramlich, C. Bosshard, and P. Günter, “Crystal engineering based on short hydrogen bonds—co-crystallization of a highly nonlinear optical merocyanine dye with nitrophenol derivatives,” Chem. Commun. 1996, 557–1558 (1996).

1994 (1)

S. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Sindhoj, “Large first hyperpolarizability in push–pull polyenes by tuning of the bond length alternation and aromaticity,” Science 263, 511–514 (1994).
[CrossRef] [PubMed]

1992 (1)

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

1991 (2)

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10653 (1991).
[CrossRef]

1989 (1)

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-Methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

1977 (1)

J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatics,” J. Chem. Phys. 67, 446–457 (1977).
[CrossRef]

1970 (1)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

1968 (1)

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

1966 (1)

1964 (1)

R. C. Miller, “Optical second-harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Blanchard-Desce, M.

S. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Sindhoj, “Large first hyperpolarizability in push–pull polyenes by tuning of the bond length alternation and aromaticity,” Science 263, 511–514 (1994).
[CrossRef] [PubMed]

Bosshard, C.

M. S. Wong, F. Pan, V. Gramlich, C. Bosshard, and P. Günter, “Self-assembly of acentric co-crystal of a highly hyperpolarizable merocyanine dye with optimized alignment for nonlinear optics,” Adv. Mater. 9, 554–557 (1997).
[CrossRef]

F. Pan, M. S. Wong, V. Gramlich, C. Bosshard, and P. Günter, “Crystal engineering based on short hydrogen bonds—co-crystallization of a highly nonlinear optical merocyanine dye with nitrophenol derivatives,” Chem. Commun. 1996, 557–1558 (1996).

M. S. Wong, C. Bosshard, F. Pan, and P. Günter, “Non-classical donor–acceptor chromophores for second-order nonlinear optics,” Adv. Mater. 8, 677–680 (1996).
[CrossRef]

M. S. Wong, U. Meier, F. Pan, C. Bosshard, V. Gramlich, and P. Günter, “Five-membered heteroaromatic hydrazone derivatives for second-order nonlinear optics,” Adv. Mater. 8, 416–420 (1996).
[CrossRef]

Bosshard, Ch.

Calabrese, J. C.

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-Methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

Cheng, L. T.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10653 (1991).
[CrossRef]

Cheng, L.-T.

S. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Sindhoj, “Large first hyperpolarizability in push–pull polyenes by tuning of the bond length alternation and aromaticity,” Science 263, 511–514 (1994).
[CrossRef] [PubMed]

Follonier, S.

Friedli, A. C.

S. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Sindhoj, “Large first hyperpolarizability in push–pull polyenes by tuning of the bond length alternation and aromaticity,” Science 263, 511–514 (1994).
[CrossRef] [PubMed]

Gramlich, V.

M. S. Wong, F. Pan, V. Gramlich, C. Bosshard, and P. Günter, “Self-assembly of acentric co-crystal of a highly hyperpolarizable merocyanine dye with optimized alignment for nonlinear optics,” Adv. Mater. 9, 554–557 (1997).
[CrossRef]

F. Pan, M. S. Wong, V. Gramlich, C. Bosshard, and P. Günter, “Crystal engineering based on short hydrogen bonds—co-crystallization of a highly nonlinear optical merocyanine dye with nitrophenol derivatives,” Chem. Commun. 1996, 557–1558 (1996).

M. S. Wong, U. Meier, F. Pan, C. Bosshard, V. Gramlich, and P. Günter, “Five-membered heteroaromatic hydrazone derivatives for second-order nonlinear optics,” Adv. Mater. 8, 416–420 (1996).
[CrossRef]

Guerin, B.

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-Methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

Günter, P.

M. S. Wong, F. Pan, V. Gramlich, C. Bosshard, and P. Günter, “Self-assembly of acentric co-crystal of a highly hyperpolarizable merocyanine dye with optimized alignment for nonlinear optics,” Adv. Mater. 9, 554–557 (1997).
[CrossRef]

S. Follonier, Ch. Bosshard, U. Meier, G. Knöpfle, C. Serbutoviez, F. Pan, and P. Günter, “New nonlinear optical organic crystal: 4-dimethyl-aminobenzaldehyde-4-nitrophenyl-hydrazone,” J. Opt. Soc. Am. B 14, 593–601 (1997).
[CrossRef]

F. Pan, M. S. Wong, V. Gramlich, C. Bosshard, and P. Günter, “Crystal engineering based on short hydrogen bonds—co-crystallization of a highly nonlinear optical merocyanine dye with nitrophenol derivatives,” Chem. Commun. 1996, 557–1558 (1996).

M. S. Wong, U. Meier, F. Pan, C. Bosshard, V. Gramlich, and P. Günter, “Five-membered heteroaromatic hydrazone derivatives for second-order nonlinear optics,” Adv. Mater. 8, 416–420 (1996).
[CrossRef]

M. S. Wong, C. Bosshard, F. Pan, and P. Günter, “Non-classical donor–acceptor chromophores for second-order nonlinear optics,” Adv. Mater. 8, 677–680 (1996).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Knöpfle, G.

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

Marder, S.

S. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Sindhoj, “Large first hyperpolarizability in push–pull polyenes by tuning of the bond length alternation and aromaticity,” Science 263, 511–514 (1994).
[CrossRef] [PubMed]

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Marder, S. R.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10653 (1991).
[CrossRef]

Meier, U.

S. Follonier, Ch. Bosshard, U. Meier, G. Knöpfle, C. Serbutoviez, F. Pan, and P. Günter, “New nonlinear optical organic crystal: 4-dimethyl-aminobenzaldehyde-4-nitrophenyl-hydrazone,” J. Opt. Soc. Am. B 14, 593–601 (1997).
[CrossRef]

M. S. Wong, U. Meier, F. Pan, C. Bosshard, V. Gramlich, and P. Günter, “Five-membered heteroaromatic hydrazone derivatives for second-order nonlinear optics,” Adv. Mater. 8, 416–420 (1996).
[CrossRef]

Meredith, G. R.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

Miller, R. C.

R. C. Miller, “Optical second-harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Oudar, J. L.

J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatics,” J. Chem. Phys. 67, 446–457 (1977).
[CrossRef]

Pan, F.

M. S. Wong, F. Pan, V. Gramlich, C. Bosshard, and P. Günter, “Self-assembly of acentric co-crystal of a highly hyperpolarizable merocyanine dye with optimized alignment for nonlinear optics,” Adv. Mater. 9, 554–557 (1997).
[CrossRef]

S. Follonier, Ch. Bosshard, U. Meier, G. Knöpfle, C. Serbutoviez, F. Pan, and P. Günter, “New nonlinear optical organic crystal: 4-dimethyl-aminobenzaldehyde-4-nitrophenyl-hydrazone,” J. Opt. Soc. Am. B 14, 593–601 (1997).
[CrossRef]

M. S. Wong, U. Meier, F. Pan, C. Bosshard, V. Gramlich, and P. Günter, “Five-membered heteroaromatic hydrazone derivatives for second-order nonlinear optics,” Adv. Mater. 8, 416–420 (1996).
[CrossRef]

F. Pan, M. S. Wong, V. Gramlich, C. Bosshard, and P. Günter, “Crystal engineering based on short hydrogen bonds—co-crystallization of a highly nonlinear optical merocyanine dye with nitrophenol derivatives,” Chem. Commun. 1996, 557–1558 (1996).

M. S. Wong, C. Bosshard, F. Pan, and P. Günter, “Non-classical donor–acceptor chromophores for second-order nonlinear optics,” Adv. Mater. 8, 677–680 (1996).
[CrossRef]

Perry, J. W.

S. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Sindhoj, “Large first hyperpolarizability in push–pull polyenes by tuning of the bond length alternation and aromaticity,” Science 263, 511–514 (1994).
[CrossRef] [PubMed]

Perry, T. T.

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

Rikken, G.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10653 (1991).
[CrossRef]

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Serbutoviez, C.

Shumate, M. S.

Sindhoj, J.

S. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Sindhoj, “Large first hyperpolarizability in push–pull polyenes by tuning of the bond length alternation and aromaticity,” Science 263, 511–514 (1994).
[CrossRef] [PubMed]

Spangler, C. W.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10653 (1991).
[CrossRef]

Stevenson, S. H.

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-Methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

Stiegman, A. E.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10653 (1991).
[CrossRef]

Tam, W.

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10653 (1991).
[CrossRef]

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-Methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

Tiemann, B. G.

S. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Sindhoj, “Large first hyperpolarizability in push–pull polyenes by tuning of the bond length alternation and aromaticity,” Science 263, 511–514 (1994).
[CrossRef] [PubMed]

Wong, M. S.

M. S. Wong, F. Pan, V. Gramlich, C. Bosshard, and P. Günter, “Self-assembly of acentric co-crystal of a highly hyperpolarizable merocyanine dye with optimized alignment for nonlinear optics,” Adv. Mater. 9, 554–557 (1997).
[CrossRef]

M. S. Wong, C. Bosshard, F. Pan, and P. Günter, “Non-classical donor–acceptor chromophores for second-order nonlinear optics,” Adv. Mater. 8, 677–680 (1996).
[CrossRef]

F. Pan, M. S. Wong, V. Gramlich, C. Bosshard, and P. Günter, “Crystal engineering based on short hydrogen bonds—co-crystallization of a highly nonlinear optical merocyanine dye with nitrophenol derivatives,” Chem. Commun. 1996, 557–1558 (1996).

M. S. Wong, U. Meier, F. Pan, C. Bosshard, V. Gramlich, and P. Günter, “Five-membered heteroaromatic hydrazone derivatives for second-order nonlinear optics,” Adv. Mater. 8, 416–420 (1996).
[CrossRef]

Adv. Mater. (3)

M. S. Wong, C. Bosshard, F. Pan, and P. Günter, “Non-classical donor–acceptor chromophores for second-order nonlinear optics,” Adv. Mater. 8, 677–680 (1996).
[CrossRef]

M. S. Wong, U. Meier, F. Pan, C. Bosshard, V. Gramlich, and P. Günter, “Five-membered heteroaromatic hydrazone derivatives for second-order nonlinear optics,” Adv. Mater. 8, 416–420 (1996).
[CrossRef]

M. S. Wong, F. Pan, V. Gramlich, C. Bosshard, and P. Günter, “Self-assembly of acentric co-crystal of a highly hyperpolarizable merocyanine dye with optimized alignment for nonlinear optics,” Adv. Mater. 9, 554–557 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. C. Miller, “Optical second-harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

Chem. Commun. (1)

F. Pan, M. S. Wong, V. Gramlich, C. Bosshard, and P. Günter, “Crystal engineering based on short hydrogen bonds—co-crystallization of a highly nonlinear optical merocyanine dye with nitrophenol derivatives,” Chem. Commun. 1996, 557–1558 (1996).

Chem. Phys. Lett. (1)

W. Tam, B. Guerin, J. C. Calabrese, and S. H. Stevenson, “3-Methyl-4-methoxy-4-nitrostilbene (MMONS): crystal structure of a highly efficient material for second-harmonic generation,” Chem. Phys. Lett. 154, 93–96 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

J. Appl. Phys. (2)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

J. Chem. Phys. (1)

J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatics,” J. Chem. Phys. 67, 446–457 (1977).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (2)

L. T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991).
[CrossRef]

L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences,” J. Phys. Chem. 95, 10643–10653 (1991).
[CrossRef]

Science (1)

S. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and J. Sindhoj, “Large first hyperpolarizability in push–pull polyenes by tuning of the bond length alternation and aromaticity,” Science 263, 511–514 (1994).
[CrossRef] [PubMed]

Other (3)

Ch. Bosshard, K. Sutter, Ph. Pretre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, in Organic Nonlinear Optical Materials, A. F. Garito and F. Kajzar, eds., Vol. 1 of Advances in Nonlinear Optics (Gordon & Breach, Basel, Switzerland, 1995).

J. F. Nicoud and R. J. Twieg, “Design and synthesis of organic molecular compounds for efficient second-harmonic generation,” in Nonlinear Optical Properties of Organic Molecules and Crystals I, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), pp. 227–296.

S. Kurtz, J. Jerphagnon, and M. M. Choy, “Nonlinear dielectric susceptibilities,” in Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystals, Vol. III/11 of Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, K.-H. Hellwege and A. M. Hellwege, eds. (Springer-Verlag, Berlin, 1979), Chap. 6, pp. 671–743. For the nonlinear optical susceptibility d11 of quartz we used the arithmetic average of the different values reported in this reference.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Resonance structures of the merocyanine dyes Mero-1 and Mero-2. A is a quinoid form, and B is a zwitterionic form. (b) Arrangement of the short-hydrogen-bonded molecular aggregate formed by the merocyanine dye Mero-2 and methyl 2,4-dihydroxybenzoate (MDB) in the cocrystal.

Fig. 2
Fig. 2

(a) Crystal packing of cocrystal Mero-2–MDB in a unit cell. (b) Crystal packing of cocrystal Mero-2–2,4-dihydroxypropiophenone in a unit cell.

Fig. 3
Fig. 3

Phase I and phase II bulk cocrystals of Mero-2–MDB as grown.

Fig. 4
Fig. 4

Absorption spectra of Mero–MDB for the incident light polarized along the dielectric x1 axis. The slope within the absorption region and its intersection with the wavelength axis for both samples are also shown.

Fig. 5
Fig. 5

Dispersion of the refractive indices of Mero–MDB for the phase I and the phase II crystals. The polarization of the incident light was parallel to the dielectric x1 axis. The solid curves are fits with the Sellmeier one-oscillator model. (The Sellmeier parameters are listed in Table 1.)

Tables (3)

Tables Icon

Table 1 Sellmeier Parameters and Refractive Index for Both Crystals at λ=700 nm a

Tables Icon

Table 2 Measured Second-Order Nonlinear Optical Susceptibility d11 and Coherence Lengths for Both Crystals

Tables Icon

Table 3 Electro-Optic Properties of Mero-2 MDB

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n2(ω)-1=A+ωp2γ0(ωeg2-ω2).
n2(ω)-1=ReA+ωp2γ0(ωeg2-ω2+iΓω),

Metrics