Abstract

Three types of different cross-linked polyurethane were prepared by the reaction of poly[(phenylisocyanate)-co-formaldehyde] with three different hydroxy-functionalized nonlinear optical chromophores. For poled and cured polymers the χ(2) values were between 16.8 and 37.4 pm/V, measured at a wavelength of 1.064 μm. Thermal stability studies performed on a sample having bonding sites of vertical–parallel structure between the chromophore and the liquid polymer matrix indicated, by second-harmonic-generation activity, a minimum decay of the χ(2) value owing to lattice hardening of the polyurethane matrix with three bonding sites. The relaxation times of aligned dipoles in vertical–parallel polyurethane were measured by variation of poling and cross-linking conditions. Three decay modes were found to exist: the mode that corresponds to partially bonded or free unbonded chromophores, the mode of thermal relaxation of bonded chromophores, and the mode that is due to the relaxation of an elastically stressed main chain induced by the poling elastic field.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-S. Lee, M. Samoc, and P. N. Prasad, “Polymers for photonics applications,” in Comprehensive Polymer Science, S. L. Aggarwal and S. Russo, eds. (Pergamon, Oxford, 1992), Suppl. vol., pp. 407–447.
  2. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
    [CrossRef]
  3. Y.-W. Kim, K.-S. Lee, J.-I. Jin, and K.-Y. Choi, “Synthesis and nonlinear optical properties of poly(4-nitrophenylallylamine) derivatives,” Bull. Korean Chem. Soc. 17, 607 (1996).
  4. B. K. Mandal, J. Kumar, J. C. Huang, and S. K. Tripathy, “Novel photo-crosslinked nonlinear optical polymers,” Makromol. Chem. Rapid Commun. 12, 63 (1991).
    [CrossRef]
  5. B. K. Mandal, Y. M. Chen, J. Y. Lee, J. Kumar, and S. K. Tripathy, “Cross-linked stable second-order nonlinear optical polymer by photochemical reaction,” Appl. Phys. Lett. 58, 2459 (1991).
    [CrossRef]
  6. G. Tapolsky, J. P. Lecomte, and R. Meyrueik, “Maleimide-based cross-linkable electrooptic polymers with excellent thermal stability characteristics,” Macromolecules 26, 7383 (1993).
    [CrossRef]
  7. L. P. Yu, W. Chan, and Z. Bao, “Synthesis and characterization of a thermally curable second-order nonlinear optical polymer,” Macromolecules 25, 5609 (1992).
    [CrossRef]
  8. M. Eich, B. Reck, D. Y. Yoon, G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field,” J. Appl. Phys. 66, 3241 (1989).
    [CrossRef]
  9. J. A. F. Boogers, P. Th. Klasse, J. J. deVlieger, and A. H. A. Tinnemans, “Cross-linked polymer materials for nonlinear optics. 2. Polyurethanes bearing azobenzene dyes,” Macromolecules 27, 205 (1994).
    [CrossRef]
  10. M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032 (1992).
    [CrossRef]
  11. J. E. Beecher, T. Durst, J. M. J. Frechet, A. Godt, and C. S. Willand, “Photo-cross-linking of a polyurethane with pendant methacryloyl-terminated 4-alkoxy-4-sulfamoylstilbene NLO chromophores,” Macromolecules 27, 3472 (1994).
    [CrossRef]
  12. C. Xu, B. Wu, M. W. Becker, L. R. Dalton, P. M. Ranon, Y. Q. Shi, and W. H. Steier, “Main-chain second-order nonlinear optical polymers: random incorporation of amino-sulfone chromophores,” Chem. Mater. 5, 1439 (1993).
    [CrossRef]
  13. P. Kitipical, R. La Peruta, G. M. Korenowski, and G. E. Wnek, “In-situ poling and synthesis of NLO chromophore-bearing polyurethane for second harmonic generation,” J. Polym. Sci. Polym. Chem. 31, 1365 (1993).
    [CrossRef]
  14. K.-S. Lee, Y.-W. Kim, and K.-Y. Choi, “Synthesis and characterization of polyurethanes with nonlinear optical active groups,” Synth. Met. 57, 3998 (1993).
    [CrossRef]
  15. C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, “Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties,” Macromolecules 28, 3713 (1995).
    [CrossRef]
  16. K.-J. Moon, “Synthesis and properties of polyurethanes and poly(p-phenylenevinylene) derivatives with high optical nonlinearity,” Ph.D. dissertation (Korea Advanced Institute of Science and Technology, Taejon, Korea, 1997).
  17. K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, “Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye,” Macromolecules 29, 861 (1996).
    [CrossRef]
  18. Y. H. Min, K.-S. Lee, C. S. Yoon, K.-S. Kim, K.-J. Moon, and H.-K. Shim, “Preparation and nonlinear optical properties of sol-gel silica glass with hemicyanine-type chromophore,” Polymer (Korea) 19, 569 (1995).

1996 (2)

Y.-W. Kim, K.-S. Lee, J.-I. Jin, and K.-Y. Choi, “Synthesis and nonlinear optical properties of poly(4-nitrophenylallylamine) derivatives,” Bull. Korean Chem. Soc. 17, 607 (1996).

K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, “Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye,” Macromolecules 29, 861 (1996).
[CrossRef]

1995 (1)

C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, “Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties,” Macromolecules 28, 3713 (1995).
[CrossRef]

1994 (3)

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

J. A. F. Boogers, P. Th. Klasse, J. J. deVlieger, and A. H. A. Tinnemans, “Cross-linked polymer materials for nonlinear optics. 2. Polyurethanes bearing azobenzene dyes,” Macromolecules 27, 205 (1994).
[CrossRef]

J. E. Beecher, T. Durst, J. M. J. Frechet, A. Godt, and C. S. Willand, “Photo-cross-linking of a polyurethane with pendant methacryloyl-terminated 4-alkoxy-4-sulfamoylstilbene NLO chromophores,” Macromolecules 27, 3472 (1994).
[CrossRef]

1993 (4)

C. Xu, B. Wu, M. W. Becker, L. R. Dalton, P. M. Ranon, Y. Q. Shi, and W. H. Steier, “Main-chain second-order nonlinear optical polymers: random incorporation of amino-sulfone chromophores,” Chem. Mater. 5, 1439 (1993).
[CrossRef]

P. Kitipical, R. La Peruta, G. M. Korenowski, and G. E. Wnek, “In-situ poling and synthesis of NLO chromophore-bearing polyurethane for second harmonic generation,” J. Polym. Sci. Polym. Chem. 31, 1365 (1993).
[CrossRef]

K.-S. Lee, Y.-W. Kim, and K.-Y. Choi, “Synthesis and characterization of polyurethanes with nonlinear optical active groups,” Synth. Met. 57, 3998 (1993).
[CrossRef]

G. Tapolsky, J. P. Lecomte, and R. Meyrueik, “Maleimide-based cross-linkable electrooptic polymers with excellent thermal stability characteristics,” Macromolecules 26, 7383 (1993).
[CrossRef]

1992 (2)

L. P. Yu, W. Chan, and Z. Bao, “Synthesis and characterization of a thermally curable second-order nonlinear optical polymer,” Macromolecules 25, 5609 (1992).
[CrossRef]

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032 (1992).
[CrossRef]

1991 (2)

B. K. Mandal, J. Kumar, J. C. Huang, and S. K. Tripathy, “Novel photo-crosslinked nonlinear optical polymers,” Makromol. Chem. Rapid Commun. 12, 63 (1991).
[CrossRef]

B. K. Mandal, Y. M. Chen, J. Y. Lee, J. Kumar, and S. K. Tripathy, “Cross-linked stable second-order nonlinear optical polymer by photochemical reaction,” Appl. Phys. Lett. 58, 2459 (1991).
[CrossRef]

1989 (1)

M. Eich, B. Reck, D. Y. Yoon, G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field,” J. Appl. Phys. 66, 3241 (1989).
[CrossRef]

Bao, Z.

L. P. Yu, W. Chan, and Z. Bao, “Synthesis and characterization of a thermally curable second-order nonlinear optical polymer,” Macromolecules 25, 5609 (1992).
[CrossRef]

Becker, M. W.

C. Xu, B. Wu, M. W. Becker, L. R. Dalton, P. M. Ranon, Y. Q. Shi, and W. H. Steier, “Main-chain second-order nonlinear optical polymers: random incorporation of amino-sulfone chromophores,” Chem. Mater. 5, 1439 (1993).
[CrossRef]

Beecher, J. E.

J. E. Beecher, T. Durst, J. M. J. Frechet, A. Godt, and C. S. Willand, “Photo-cross-linking of a polyurethane with pendant methacryloyl-terminated 4-alkoxy-4-sulfamoylstilbene NLO chromophores,” Macromolecules 27, 3472 (1994).
[CrossRef]

Bjorklund, G. C.

M. Eich, B. Reck, D. Y. Yoon, G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field,” J. Appl. Phys. 66, 3241 (1989).
[CrossRef]

Boogers, J. A. F.

J. A. F. Boogers, P. Th. Klasse, J. J. deVlieger, and A. H. A. Tinnemans, “Cross-linked polymer materials for nonlinear optics. 2. Polyurethanes bearing azobenzene dyes,” Macromolecules 27, 205 (1994).
[CrossRef]

Burland, D. M.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

Chan, W.

L. P. Yu, W. Chan, and Z. Bao, “Synthesis and characterization of a thermally curable second-order nonlinear optical polymer,” Macromolecules 25, 5609 (1992).
[CrossRef]

Chen, M.

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032 (1992).
[CrossRef]

Chen, Y. M.

B. K. Mandal, Y. M. Chen, J. Y. Lee, J. Kumar, and S. K. Tripathy, “Cross-linked stable second-order nonlinear optical polymer by photochemical reaction,” Appl. Phys. Lett. 58, 2459 (1991).
[CrossRef]

Choi, K.-Y.

Y.-W. Kim, K.-S. Lee, J.-I. Jin, and K.-Y. Choi, “Synthesis and nonlinear optical properties of poly(4-nitrophenylallylamine) derivatives,” Bull. Korean Chem. Soc. 17, 607 (1996).

K.-S. Lee, Y.-W. Kim, and K.-Y. Choi, “Synthesis and characterization of polyurethanes with nonlinear optical active groups,” Synth. Met. 57, 3998 (1993).
[CrossRef]

Dalton, L. R.

C. Xu, B. Wu, M. W. Becker, L. R. Dalton, P. M. Ranon, Y. Q. Shi, and W. H. Steier, “Main-chain second-order nonlinear optical polymers: random incorporation of amino-sulfone chromophores,” Chem. Mater. 5, 1439 (1993).
[CrossRef]

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032 (1992).
[CrossRef]

deVlieger, J. J.

J. A. F. Boogers, P. Th. Klasse, J. J. deVlieger, and A. H. A. Tinnemans, “Cross-linked polymer materials for nonlinear optics. 2. Polyurethanes bearing azobenzene dyes,” Macromolecules 27, 205 (1994).
[CrossRef]

Durst, T.

J. E. Beecher, T. Durst, J. M. J. Frechet, A. Godt, and C. S. Willand, “Photo-cross-linking of a polyurethane with pendant methacryloyl-terminated 4-alkoxy-4-sulfamoylstilbene NLO chromophores,” Macromolecules 27, 3472 (1994).
[CrossRef]

Eich, M.

M. Eich, B. Reck, D. Y. Yoon, G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field,” J. Appl. Phys. 66, 3241 (1989).
[CrossRef]

Frechet, J. M. J.

J. E. Beecher, T. Durst, J. M. J. Frechet, A. Godt, and C. S. Willand, “Photo-cross-linking of a polyurethane with pendant methacryloyl-terminated 4-alkoxy-4-sulfamoylstilbene NLO chromophores,” Macromolecules 27, 3472 (1994).
[CrossRef]

Godt, A.

J. E. Beecher, T. Durst, J. M. J. Frechet, A. Godt, and C. S. Willand, “Photo-cross-linking of a polyurethane with pendant methacryloyl-terminated 4-alkoxy-4-sulfamoylstilbene NLO chromophores,” Macromolecules 27, 3472 (1994).
[CrossRef]

Huang, J. C.

B. K. Mandal, J. Kumar, J. C. Huang, and S. K. Tripathy, “Novel photo-crosslinked nonlinear optical polymers,” Makromol. Chem. Rapid Commun. 12, 63 (1991).
[CrossRef]

Jin, J.-I.

Y.-W. Kim, K.-S. Lee, J.-I. Jin, and K.-Y. Choi, “Synthesis and nonlinear optical properties of poly(4-nitrophenylallylamine) derivatives,” Bull. Korean Chem. Soc. 17, 607 (1996).

Kim, Y.-W.

Y.-W. Kim, K.-S. Lee, J.-I. Jin, and K.-Y. Choi, “Synthesis and nonlinear optical properties of poly(4-nitrophenylallylamine) derivatives,” Bull. Korean Chem. Soc. 17, 607 (1996).

K.-S. Lee, Y.-W. Kim, and K.-Y. Choi, “Synthesis and characterization of polyurethanes with nonlinear optical active groups,” Synth. Met. 57, 3998 (1993).
[CrossRef]

Kitipical, P.

P. Kitipical, R. La Peruta, G. M. Korenowski, and G. E. Wnek, “In-situ poling and synthesis of NLO chromophore-bearing polyurethane for second harmonic generation,” J. Polym. Sci. Polym. Chem. 31, 1365 (1993).
[CrossRef]

Klasse, P. Th.

J. A. F. Boogers, P. Th. Klasse, J. J. deVlieger, and A. H. A. Tinnemans, “Cross-linked polymer materials for nonlinear optics. 2. Polyurethanes bearing azobenzene dyes,” Macromolecules 27, 205 (1994).
[CrossRef]

Korenowski, G. M.

P. Kitipical, R. La Peruta, G. M. Korenowski, and G. E. Wnek, “In-situ poling and synthesis of NLO chromophore-bearing polyurethane for second harmonic generation,” J. Polym. Sci. Polym. Chem. 31, 1365 (1993).
[CrossRef]

Kumar, J.

B. K. Mandal, Y. M. Chen, J. Y. Lee, J. Kumar, and S. K. Tripathy, “Cross-linked stable second-order nonlinear optical polymer by photochemical reaction,” Appl. Phys. Lett. 58, 2459 (1991).
[CrossRef]

B. K. Mandal, J. Kumar, J. C. Huang, and S. K. Tripathy, “Novel photo-crosslinked nonlinear optical polymers,” Makromol. Chem. Rapid Commun. 12, 63 (1991).
[CrossRef]

La Peruta, R.

P. Kitipical, R. La Peruta, G. M. Korenowski, and G. E. Wnek, “In-situ poling and synthesis of NLO chromophore-bearing polyurethane for second harmonic generation,” J. Polym. Sci. Polym. Chem. 31, 1365 (1993).
[CrossRef]

Lecomte, J. P.

G. Tapolsky, J. P. Lecomte, and R. Meyrueik, “Maleimide-based cross-linkable electrooptic polymers with excellent thermal stability characteristics,” Macromolecules 26, 7383 (1993).
[CrossRef]

Lee, J. Y.

B. K. Mandal, Y. M. Chen, J. Y. Lee, J. Kumar, and S. K. Tripathy, “Cross-linked stable second-order nonlinear optical polymer by photochemical reaction,” Appl. Phys. Lett. 58, 2459 (1991).
[CrossRef]

Lee, K.-S.

Y.-W. Kim, K.-S. Lee, J.-I. Jin, and K.-Y. Choi, “Synthesis and nonlinear optical properties of poly(4-nitrophenylallylamine) derivatives,” Bull. Korean Chem. Soc. 17, 607 (1996).

K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, “Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye,” Macromolecules 29, 861 (1996).
[CrossRef]

K.-S. Lee, Y.-W. Kim, and K.-Y. Choi, “Synthesis and characterization of polyurethanes with nonlinear optical active groups,” Synth. Met. 57, 3998 (1993).
[CrossRef]

Mandal, B. K.

B. K. Mandal, Y. M. Chen, J. Y. Lee, J. Kumar, and S. K. Tripathy, “Cross-linked stable second-order nonlinear optical polymer by photochemical reaction,” Appl. Phys. Lett. 58, 2459 (1991).
[CrossRef]

B. K. Mandal, J. Kumar, J. C. Huang, and S. K. Tripathy, “Novel photo-crosslinked nonlinear optical polymers,” Makromol. Chem. Rapid Commun. 12, 63 (1991).
[CrossRef]

Meyrueik, R.

G. Tapolsky, J. P. Lecomte, and R. Meyrueik, “Maleimide-based cross-linkable electrooptic polymers with excellent thermal stability characteristics,” Macromolecules 26, 7383 (1993).
[CrossRef]

Miller, R. D.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

Moon, K.-J.

K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, “Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye,” Macromolecules 29, 861 (1996).
[CrossRef]

Park, C.-K.

C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, “Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties,” Macromolecules 28, 3713 (1995).
[CrossRef]

Prasad, P. N.

K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, “Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye,” Macromolecules 29, 861 (1996).
[CrossRef]

C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, “Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties,” Macromolecules 28, 3713 (1995).
[CrossRef]

Ranon, P. M.

C. Xu, B. Wu, M. W. Becker, L. R. Dalton, P. M. Ranon, Y. Q. Shi, and W. H. Steier, “Main-chain second-order nonlinear optical polymers: random incorporation of amino-sulfone chromophores,” Chem. Mater. 5, 1439 (1993).
[CrossRef]

Reck, B.

M. Eich, B. Reck, D. Y. Yoon, G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field,” J. Appl. Phys. 66, 3241 (1989).
[CrossRef]

Shi, Y. Q.

C. Xu, B. Wu, M. W. Becker, L. R. Dalton, P. M. Ranon, Y. Q. Shi, and W. H. Steier, “Main-chain second-order nonlinear optical polymers: random incorporation of amino-sulfone chromophores,” Chem. Mater. 5, 1439 (1993).
[CrossRef]

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032 (1992).
[CrossRef]

Shim, H.-K.

K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, “Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye,” Macromolecules 29, 861 (1996).
[CrossRef]

Steier, W. H.

C. Xu, B. Wu, M. W. Becker, L. R. Dalton, P. M. Ranon, Y. Q. Shi, and W. H. Steier, “Main-chain second-order nonlinear optical polymers: random incorporation of amino-sulfone chromophores,” Chem. Mater. 5, 1439 (1993).
[CrossRef]

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032 (1992).
[CrossRef]

Swedek, B.

C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, “Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties,” Macromolecules 28, 3713 (1995).
[CrossRef]

Tapolsky, G.

G. Tapolsky, J. P. Lecomte, and R. Meyrueik, “Maleimide-based cross-linkable electrooptic polymers with excellent thermal stability characteristics,” Macromolecules 26, 7383 (1993).
[CrossRef]

Tinnemans, A. H. A.

J. A. F. Boogers, P. Th. Klasse, J. J. deVlieger, and A. H. A. Tinnemans, “Cross-linked polymer materials for nonlinear optics. 2. Polyurethanes bearing azobenzene dyes,” Macromolecules 27, 205 (1994).
[CrossRef]

Tripathy, S. K.

B. K. Mandal, Y. M. Chen, J. Y. Lee, J. Kumar, and S. K. Tripathy, “Cross-linked stable second-order nonlinear optical polymer by photochemical reaction,” Appl. Phys. Lett. 58, 2459 (1991).
[CrossRef]

B. K. Mandal, J. Kumar, J. C. Huang, and S. K. Tripathy, “Novel photo-crosslinked nonlinear optical polymers,” Makromol. Chem. Rapid Commun. 12, 63 (1991).
[CrossRef]

Walsh, C. A.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

Wijekoon, W. M. K. P.

C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, “Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties,” Macromolecules 28, 3713 (1995).
[CrossRef]

Willand, C. S.

J. E. Beecher, T. Durst, J. M. J. Frechet, A. Godt, and C. S. Willand, “Photo-cross-linking of a polyurethane with pendant methacryloyl-terminated 4-alkoxy-4-sulfamoylstilbene NLO chromophores,” Macromolecules 27, 3472 (1994).
[CrossRef]

Willson, G.

M. Eich, B. Reck, D. Y. Yoon, G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field,” J. Appl. Phys. 66, 3241 (1989).
[CrossRef]

Wnek, G. E.

P. Kitipical, R. La Peruta, G. M. Korenowski, and G. E. Wnek, “In-situ poling and synthesis of NLO chromophore-bearing polyurethane for second harmonic generation,” J. Polym. Sci. Polym. Chem. 31, 1365 (1993).
[CrossRef]

Wu, B.

C. Xu, B. Wu, M. W. Becker, L. R. Dalton, P. M. Ranon, Y. Q. Shi, and W. H. Steier, “Main-chain second-order nonlinear optical polymers: random incorporation of amino-sulfone chromophores,” Chem. Mater. 5, 1439 (1993).
[CrossRef]

Xu, C.

C. Xu, B. Wu, M. W. Becker, L. R. Dalton, P. M. Ranon, Y. Q. Shi, and W. H. Steier, “Main-chain second-order nonlinear optical polymers: random incorporation of amino-sulfone chromophores,” Chem. Mater. 5, 1439 (1993).
[CrossRef]

Yoon, D. Y.

M. Eich, B. Reck, D. Y. Yoon, G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field,” J. Appl. Phys. 66, 3241 (1989).
[CrossRef]

Yu, L. P.

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032 (1992).
[CrossRef]

L. P. Yu, W. Chan, and Z. Bao, “Synthesis and characterization of a thermally curable second-order nonlinear optical polymer,” Macromolecules 25, 5609 (1992).
[CrossRef]

Zhao, C.-F.

C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, “Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties,” Macromolecules 28, 3713 (1995).
[CrossRef]

Zieba, J.

K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, “Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye,” Macromolecules 29, 861 (1996).
[CrossRef]

C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, “Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties,” Macromolecules 28, 3713 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

B. K. Mandal, Y. M. Chen, J. Y. Lee, J. Kumar, and S. K. Tripathy, “Cross-linked stable second-order nonlinear optical polymer by photochemical reaction,” Appl. Phys. Lett. 58, 2459 (1991).
[CrossRef]

Bull. Korean Chem. Soc. (1)

Y.-W. Kim, K.-S. Lee, J.-I. Jin, and K.-Y. Choi, “Synthesis and nonlinear optical properties of poly(4-nitrophenylallylamine) derivatives,” Bull. Korean Chem. Soc. 17, 607 (1996).

Chem. Mater. (1)

C. Xu, B. Wu, M. W. Becker, L. R. Dalton, P. M. Ranon, Y. Q. Shi, and W. H. Steier, “Main-chain second-order nonlinear optical polymers: random incorporation of amino-sulfone chromophores,” Chem. Mater. 5, 1439 (1993).
[CrossRef]

Chem. Rev. (1)

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

J. Appl. Phys. (1)

M. Eich, B. Reck, D. Y. Yoon, G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field,” J. Appl. Phys. 66, 3241 (1989).
[CrossRef]

J. Polym. Sci. Polym. Chem. (1)

P. Kitipical, R. La Peruta, G. M. Korenowski, and G. E. Wnek, “In-situ poling and synthesis of NLO chromophore-bearing polyurethane for second harmonic generation,” J. Polym. Sci. Polym. Chem. 31, 1365 (1993).
[CrossRef]

Macromolecules (7)

G. Tapolsky, J. P. Lecomte, and R. Meyrueik, “Maleimide-based cross-linkable electrooptic polymers with excellent thermal stability characteristics,” Macromolecules 26, 7383 (1993).
[CrossRef]

L. P. Yu, W. Chan, and Z. Bao, “Synthesis and characterization of a thermally curable second-order nonlinear optical polymer,” Macromolecules 25, 5609 (1992).
[CrossRef]

C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, “Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties,” Macromolecules 28, 3713 (1995).
[CrossRef]

K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, “Synthesis, characterization, and second-order optical nonlinearity of a polyurethane structure functionalized with a hemicyanine dye,” Macromolecules 29, 861 (1996).
[CrossRef]

J. A. F. Boogers, P. Th. Klasse, J. J. deVlieger, and A. H. A. Tinnemans, “Cross-linked polymer materials for nonlinear optics. 2. Polyurethanes bearing azobenzene dyes,” Macromolecules 27, 205 (1994).
[CrossRef]

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032 (1992).
[CrossRef]

J. E. Beecher, T. Durst, J. M. J. Frechet, A. Godt, and C. S. Willand, “Photo-cross-linking of a polyurethane with pendant methacryloyl-terminated 4-alkoxy-4-sulfamoylstilbene NLO chromophores,” Macromolecules 27, 3472 (1994).
[CrossRef]

Makromol. Chem. Rapid Commun. (1)

B. K. Mandal, J. Kumar, J. C. Huang, and S. K. Tripathy, “Novel photo-crosslinked nonlinear optical polymers,” Makromol. Chem. Rapid Commun. 12, 63 (1991).
[CrossRef]

Synth. Met. (1)

K.-S. Lee, Y.-W. Kim, and K.-Y. Choi, “Synthesis and characterization of polyurethanes with nonlinear optical active groups,” Synth. Met. 57, 3998 (1993).
[CrossRef]

Other (3)

Y. H. Min, K.-S. Lee, C. S. Yoon, K.-S. Kim, K.-J. Moon, and H.-K. Shim, “Preparation and nonlinear optical properties of sol-gel silica glass with hemicyanine-type chromophore,” Polymer (Korea) 19, 569 (1995).

K.-J. Moon, “Synthesis and properties of polyurethanes and poly(p-phenylenevinylene) derivatives with high optical nonlinearity,” Ph.D. dissertation (Korea Advanced Institute of Science and Technology, Taejon, Korea, 1997).

K.-S. Lee, M. Samoc, and P. N. Prasad, “Polymers for photonics applications,” in Comprehensive Polymer Science, S. L. Aggarwal and S. Russo, eds. (Pergamon, Oxford, 1992), Suppl. vol., pp. 407–447.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic drawing for the cross-linked polyurethanes with three different bonding sites.

Fig. 2
Fig. 2

Schematic diagram of the in situ poling setup for SHG measurement: ω, λ=1064 nm (Q-switched Nd:YAG laser); 2ω, λ=532 nm; ITO, indium tin oxide; TC, temperature controller; V, dc power supply (kV); H, heater; T, thermocoupler.

Fig. 3
Fig. 3

Synthetic scheme of three types of cross-linked polyurethane system.

Fig. 4
Fig. 4

Fourier-transform IR spectra of various cross-linked polyurethanes (PU-V, PU-P, and PU-VP1).

Fig. 5
Fig. 5

Thermogravimetric analysis and differential scanning calorimetry thermograms of PU-VP1 (heating rate, 10 °C/min).

Fig. 6
Fig. 6

Change of UV–visible absorption spectra due to photobleaching of cured PU-VP1 sample (365 nm, 55 mW/cm2).

Fig. 7
Fig. 7

Changes of normalized UV–visible absorbances of the polyurethane films under the same cured condition (100 °C, 4 h) according to the length of dipping time in the DMF solvent.

Fig. 8
Fig. 8

Comparison of the SHG signal intensities of poled PU-V, PU-P, and PU-VP1 films. A y-cut quartz plate was used as a standard (d11 value, 0.8×10-10 esu).

Fig. 9
Fig. 9

Thermal endurance of SHG activity for PU-VP1.

Fig. 10
Fig. 10

In situ poling profiles obtained from (a) preuncured and (b) precured PU-VP2 films. The data represent the average values of the signals, and the standard deviation is shown by the error bar.

Fig. 11
Fig. 11

Relaxation profiles of (a) preuncured and (b) precured PU-VP2 films at room temperature after corona poling at 120 °C. Curve (c) is the relaxation profile obtained by cold poling directly after film sampling.

Fig. 12
Fig. 12

SHG signal intensity obtained from preuncured and precured films by variation of the corona poling voltage at room temperature.

Fig. 13
Fig. 13

In situ cold poling profiles of precured and preuncured films that were left at room temperature (RT) for the times listed in the figure. vac., vacuum.  

Fig. 14
Fig. 14

Relaxation behavior or the effect of poling temperature on the relaxation behavior of aligned dipoles. Fitting parameters are given in Table 2.

Fig. 15
Fig. 15

Relaxation dependence of aligned dipoles on the rate of temperature rise: (a) 17 °C/min, (b) 3.1 °C/min, (c) 1.2 °C/min.

Tables (2)

Tables Icon

Table 1 Chromophore Contents and Thermal Stability Data of χ(2) for Cross-Linked Polyurethanes

Tables Icon

Table 2 Fitting Parameters a for Dipole Relaxation at Various Cure Temperatures

Metrics