Abstract

We have used resonant reflection mode Fabry–Perot microcavities (RFPM’s) to determine linear optical and electro-optical properties of poled nonlinear optical polymers (NLP’s). Measured reflectances from angular scans of RFPM’s have been analyzed with an electromagnetic plane-wave multilayer analysis that took into account the anisotropic nature of the NLP layer. We have numerically investigated the mutual dependence of refractive indices and layer thickness and the accuracy of the results obtained. As an illustration of this characterization technique, the refractive indices of a 10 mol. % Disperse Red 1/poly(methyl methacrylate) side-chain NLP have been determined to within ±0.005, the NLP layer thicknesses to within 1%, and electro-optic coefficients to within 5%. We optimized RFPM structures for measurements at the wavelength λ=430 nm by changing the electrode metal from gold to aluminum. Using a guest–host NLP, 5 wt. % diphenyl-tricyanovinyl-aniline in poly(methyl methacrylate), we show that the method is capable of measuring electrorefraction and electroabsorption as well as a converse piezoelectric contribution. We show that a NLP decal deposition technique is particularly well suited to fabrication of these RFPM’s.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription