Abstract

Femtosecond hyper-Rayleigh scattering has been used to probe the spatial orientational fluctuations between nonlinear optical chromophores as dopants in spin-coated polymer films. The fluctuation in the second-order incoherently scattered light intensity on microtranslation of the solid sample is indicative of the degree of spatial correlation between the individual chromophores. The decay of the autocorrelation function of this fluctuating signal is characterized by a spatial correlation length. Electric-field poling of dipolar chromophores is shown to increase this correlation length. The temporal characteristics of the correlation length have been studied and compared with thermal relaxation times obtained with coherent second-harmonic generation. The correlation length decays much faster than the second-harmonic intensity. Possible implications of this fast relaxation are addressed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
    [Crossref]
  3. K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation,” J. Chem. Phys. 75, 3572–3580 (1981).
    [Crossref]
  4. G. R. Meredith, “Small computer-based system for determination of second- and third-order optical nonlinearities,” Rev. Sci. Instrum. 53, 48–53 (1982).
    [Crossref]
  5. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
    [Crossref] [PubMed]
  6. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
    [Crossref]
  7. K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Part 3, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), pp. 455–498.
  8. T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
    [Crossref] [PubMed]
  9. T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116, 9320–9323 (1994).
    [Crossref]
  10. C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with large octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
    [Crossref]
  11. W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, “Large second-order optical polarizabilities in mixed-valence metal complexes,” Nature 363, 58–59 (1993).
    [Crossref]
  12. K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
    [Crossref] [PubMed]
  13. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
    [Crossref]
  14. O. F. J. Noordman and N. F. v. Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities b of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
    [Crossref]
  15. K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
    [Crossref]
  16. O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
    [Crossref]
  17. M. A. Pauley, H.-W. Guan, C. H. Wang, and A. K.-Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second-harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821–7829 (1996).
    [Crossref]
  18. A. E. Siegman, Lasers (Oxford U. Press, Oxford, 1986).
  19. R. Bersohn, Y.-H. Pao, and H. L. Frisch, “Double-quantum light scattering by molecules,” J. Chem. Phys. 45, 3184–3507 (1966).
    [Crossref]
  20. T. Verbiest, E. Hendrickx, A. Persoons, and K. Clays, “Measurements of molecular hyperpolarizabilities using hyper-Rayleigh scattering,” in Nonlinear Optical Properties of Organic Materials V, D. J. Williams, ed., Proc. SPIE1775, 206–212 (1992).
    [Crossref]
  21. G. J. T. Heesink, A. G. T. Ruiter, N. F. vanHulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper-Rayleigh scattering,” Phys. Rev. Lett. 71, 999–1002 (1993).
    [Crossref] [PubMed]
  22. M. Kauranen and A. Persoons, “Theory of polarization measurements of second-order nonlinear light scattering,” J. Chem. Phys. 104, 3445–3456 (1996).
    [Crossref]
  23. I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
    [Crossref]
  24. M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
    [Crossref]
  25. K. Clays, M. Wu, and A. Persoons, “Femtosecond hyper-Rayleigh scattering study of spatial orientational correlations between chromophores,” J. Nonlinear Opt. Phys. Mater. 5, 59–71 (1996).
    [Crossref]
  26. C. A. Bosshard, “Optical and nonlinear optical properties of 2-cylcooctylamino-5-nitropyridine and 2-docosylamino-5-nitropyridine molecules, crystals and Langmuir–Blodgett films,” Ph.D. dissertation (Swiss Federal Institute of Technology, Lausanne, Switzerland, 1991).
  27. G. Olbrechts, E. Put, K. Clays, A. Persoons, and N. Matsuda, “Probing of spatial orientational correlations between chromophores in polymer films by femtosecond hyper-Rayleigh scattering,” Chem. Phys. Lett. 253, 135–140 (1996).
    [Crossref]
  28. G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
    [Crossref]
  29. T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
    [Crossref]
  30. N. Matsuda, G. Olbrechts, E. J. H. Put, K. Clays, and A. Persoons, “Comparison between optical nonlinearity relaxation times from coherent second-harmonic generation and from incoherent hyper-Rayleigh scattering,” Appl. Phys. Lett. 69, 4145–4147 (1996).
    [Crossref]
  31. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
    [Crossref]
  32. T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
    [Crossref] [PubMed]
  33. T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
    [Crossref]
  34. B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley Interscience, New York, 1975).

1996 (7)

O. F. J. Noordman and N. F. v. Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities b of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
[Crossref]

M. A. Pauley, H.-W. Guan, C. H. Wang, and A. K.-Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second-harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821–7829 (1996).
[Crossref]

M. Kauranen and A. Persoons, “Theory of polarization measurements of second-order nonlinear light scattering,” J. Chem. Phys. 104, 3445–3456 (1996).
[Crossref]

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

K. Clays, M. Wu, and A. Persoons, “Femtosecond hyper-Rayleigh scattering study of spatial orientational correlations between chromophores,” J. Nonlinear Opt. Phys. Mater. 5, 59–71 (1996).
[Crossref]

G. Olbrechts, E. Put, K. Clays, A. Persoons, and N. Matsuda, “Probing of spatial orientational correlations between chromophores in polymer films by femtosecond hyper-Rayleigh scattering,” Chem. Phys. Lett. 253, 135–140 (1996).
[Crossref]

N. Matsuda, G. Olbrechts, E. J. H. Put, K. Clays, and A. Persoons, “Comparison between optical nonlinearity relaxation times from coherent second-harmonic generation and from incoherent hyper-Rayleigh scattering,” Appl. Phys. Lett. 69, 4145–4147 (1996).
[Crossref]

1995 (4)

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[Crossref] [PubMed]

T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
[Crossref]

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[Crossref]

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with large octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[Crossref]

1994 (5)

K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
[Crossref]

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116, 9320–9323 (1994).
[Crossref]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
[Crossref]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[Crossref]

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[Crossref]

1993 (4)

G. J. T. Heesink, A. G. T. Ruiter, N. F. vanHulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper-Rayleigh scattering,” Phys. Rev. Lett. 71, 999–1002 (1993).
[Crossref] [PubMed]

W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, “Large second-order optical polarizabilities in mixed-valence metal complexes,” Nature 363, 58–59 (1993).
[Crossref]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[Crossref] [PubMed]

T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
[Crossref] [PubMed]

1992 (2)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[Crossref]

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

1991 (1)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[Crossref] [PubMed]

1990 (1)

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

1982 (1)

G. R. Meredith, “Small computer-based system for determination of second- and third-order optical nonlinearities,” Rev. Sci. Instrum. 53, 48–53 (1982).
[Crossref]

1981 (1)

K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation,” J. Chem. Phys. 75, 3572–3580 (1981).
[Crossref]

1975 (1)

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
[Crossref]

1966 (1)

R. Bersohn, Y.-H. Pao, and H. L. Frisch, “Double-quantum light scattering by molecules,” J. Chem. Phys. 45, 3184–3507 (1966).
[Crossref]

Armstrong, N. J.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[Crossref]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley Interscience, New York, 1975).

Bersohn, R.

R. Bersohn, Y.-H. Pao, and H. L. Frisch, “Double-quantum light scattering by molecules,” J. Chem. Phys. 45, 3184–3507 (1966).
[Crossref]

Bethea, C. G.

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
[Crossref]

Bölger, B.

G. J. T. Heesink, A. G. T. Ruiter, N. F. vanHulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper-Rayleigh scattering,” Phys. Rev. Lett. 71, 999–1002 (1993).
[Crossref] [PubMed]

Bosshard, C.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Bosshard, C. A.

C. A. Bosshard, “Optical and nonlinear optical properties of 2-cylcooctylamino-5-nitropyridine and 2-docosylamino-5-nitropyridine molecules, crystals and Langmuir–Blodgett films,” Ph.D. dissertation (Swiss Federal Institute of Technology, Lausanne, Switzerland, 1991).

Bourgault, M.

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with large octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[Crossref]

Bozec, H. L.

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with large octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[Crossref]

Brédas, J.-L.

T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
[Crossref] [PubMed]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[Crossref] [PubMed]

Burland, D. M.

T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
[Crossref]

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[Crossref] [PubMed]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[Crossref]

Chauchard, E.

W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, “Large second-order optical polarizabilities in mixed-valence metal complexes,” Nature 363, 58–59 (1993).
[Crossref]

Cho, B. R.

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[Crossref]

Clays, K.

N. Matsuda, G. Olbrechts, E. J. H. Put, K. Clays, and A. Persoons, “Comparison between optical nonlinearity relaxation times from coherent second-harmonic generation and from incoherent hyper-Rayleigh scattering,” Appl. Phys. Lett. 69, 4145–4147 (1996).
[Crossref]

G. Olbrechts, E. Put, K. Clays, A. Persoons, and N. Matsuda, “Probing of spatial orientational correlations between chromophores in polymer films by femtosecond hyper-Rayleigh scattering,” Chem. Phys. Lett. 253, 135–140 (1996).
[Crossref]

K. Clays, M. Wu, and A. Persoons, “Femtosecond hyper-Rayleigh scattering study of spatial orientational correlations between chromophores,” J. Nonlinear Opt. Phys. Mater. 5, 59–71 (1996).
[Crossref]

K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
[Crossref]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
[Crossref]

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116, 9320–9323 (1994).
[Crossref]

T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
[Crossref] [PubMed]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[Crossref] [PubMed]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[Crossref]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[Crossref] [PubMed]

K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Part 3, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), pp. 455–498.

T. Verbiest, E. Hendrickx, A. Persoons, and K. Clays, “Measurements of molecular hyperpolarizabilities using hyper-Rayleigh scattering,” in Nonlinear Optical Properties of Organic Materials V, D. J. Williams, ed., Proc. SPIE1775, 206–212 (1992).
[Crossref]

De Maeyer, L.

K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Part 3, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), pp. 455–498.

Dehu, C.

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[Crossref] [PubMed]

Denning, R. G.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, “Large second-order optical polarizabilities in mixed-valence metal complexes,” Nature 363, 58–59 (1993).
[Crossref]

Dhenaut, C.

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with large octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[Crossref]

Ezenyilimba, M. C.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[Crossref]

Feuer, B.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

Flörsheimer, M.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Frisch, H. L.

R. Bersohn, Y.-H. Pao, and H. L. Frisch, “Double-quantum light scattering by molecules,” J. Chem. Phys. 45, 3184–3507 (1966).
[Crossref]

Garito, A. F.

K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation,” J. Chem. Phys. 75, 3572–3580 (1981).
[Crossref]

Guan, H.-W.

M. A. Pauley, H.-W. Guan, C. H. Wang, and A. K.-Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second-harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821–7829 (1996).
[Crossref]

Günter, P.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Haas, D.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

Heesink, G. J. T.

G. J. T. Heesink, A. G. T. Ruiter, N. F. vanHulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper-Rayleigh scattering,” Phys. Rev. Lett. 71, 999–1002 (1993).
[Crossref] [PubMed]

Hendrickx, E.

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[Crossref] [PubMed]

T. Verbiest, E. Hendrickx, A. Persoons, and K. Clays, “Measurements of molecular hyperpolarizabilities using hyper-Rayleigh scattering,” in Nonlinear Optical Properties of Organic Materials V, D. J. Williams, ed., Proc. SPIE1775, 206–212 (1992).
[Crossref]

Je, J. T.

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[Crossref]

Jen, A. K.-Y.

M. A. Pauley, H.-W. Guan, C. H. Wang, and A. K.-Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second-harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821–7829 (1996).
[Crossref]

Jurich, M. C.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[Crossref] [PubMed]

Karim, D.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

Kauranen, M.

M. Kauranen and A. Persoons, “Theory of polarization measurements of second-order nonlinear light scattering,” J. Chem. Phys. 104, 3445–3456 (1996).
[Crossref]

Khanarian, G.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

Küpfer, M.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Laidlaw, W. M.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, “Large second-order optical polarizabilities in mixed-valence metal complexes,” Nature 363, 58–59 (1993).
[Crossref]

Ledoux, I.

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with large octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[Crossref]

Lee, V. Y.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[Crossref] [PubMed]

Levine, B. F.

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
[Crossref]

Looser, H.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Matsuda, N.

G. Olbrechts, E. Put, K. Clays, A. Persoons, and N. Matsuda, “Probing of spatial orientational correlations between chromophores in polymer films by femtosecond hyper-Rayleigh scattering,” Chem. Phys. Lett. 253, 135–140 (1996).
[Crossref]

N. Matsuda, G. Olbrechts, E. J. H. Put, K. Clays, and A. Persoons, “Comparison between optical nonlinearity relaxation times from coherent second-harmonic generation and from incoherent hyper-Rayleigh scattering,” Appl. Phys. Lett. 69, 4145–4147 (1996).
[Crossref]

Meredith, G. R.

G. R. Meredith, “Small computer-based system for determination of second- and third-order optical nonlinearities,” Rev. Sci. Instrum. 53, 48–53 (1982).
[Crossref]

Meyers, F.

Miller, R. D.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[Crossref] [PubMed]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[Crossref]

Morrison, I. D.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

Motschmann, H. R.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[Crossref]

Noordman, O. F. J.

O. F. J. Noordman and N. F. v. Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities b of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
[Crossref]

Norwood, R. A.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

Olbrechts, G.

N. Matsuda, G. Olbrechts, E. J. H. Put, K. Clays, and A. Persoons, “Comparison between optical nonlinearity relaxation times from coherent second-harmonic generation and from incoherent hyper-Rayleigh scattering,” Appl. Phys. Lett. 69, 4145–4147 (1996).
[Crossref]

G. Olbrechts, E. Put, K. Clays, A. Persoons, and N. Matsuda, “Probing of spatial orientational correlations between chromophores in polymer films by femtosecond hyper-Rayleigh scattering,” Chem. Phys. Lett. 253, 135–140 (1996).
[Crossref]

Pao, Y.-H.

R. Bersohn, Y.-H. Pao, and H. L. Frisch, “Double-quantum light scattering by molecules,” J. Chem. Phys. 45, 3184–3507 (1966).
[Crossref]

Pauley, M. A.

M. A. Pauley, H.-W. Guan, C. H. Wang, and A. K.-Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second-harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821–7829 (1996).
[Crossref]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley Interscience, New York, 1975).

Penner, T. L.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[Crossref]

Persoons, A.

N. Matsuda, G. Olbrechts, E. J. H. Put, K. Clays, and A. Persoons, “Comparison between optical nonlinearity relaxation times from coherent second-harmonic generation and from incoherent hyper-Rayleigh scattering,” Appl. Phys. Lett. 69, 4145–4147 (1996).
[Crossref]

G. Olbrechts, E. Put, K. Clays, A. Persoons, and N. Matsuda, “Probing of spatial orientational correlations between chromophores in polymer films by femtosecond hyper-Rayleigh scattering,” Chem. Phys. Lett. 253, 135–140 (1996).
[Crossref]

K. Clays, M. Wu, and A. Persoons, “Femtosecond hyper-Rayleigh scattering study of spatial orientational correlations between chromophores,” J. Nonlinear Opt. Phys. Mater. 5, 59–71 (1996).
[Crossref]

M. Kauranen and A. Persoons, “Theory of polarization measurements of second-order nonlinear light scattering,” J. Chem. Phys. 104, 3445–3456 (1996).
[Crossref]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
[Crossref]

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116, 9320–9323 (1994).
[Crossref]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[Crossref] [PubMed]

W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, “Large second-order optical polarizabilities in mixed-valence metal complexes,” Nature 363, 58–59 (1993).
[Crossref]

T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
[Crossref] [PubMed]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[Crossref]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[Crossref] [PubMed]

K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Part 3, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), pp. 455–498.

T. Verbiest, E. Hendrickx, A. Persoons, and K. Clays, “Measurements of molecular hyperpolarizabilities using hyper-Rayleigh scattering,” in Nonlinear Optical Properties of Organic Materials V, D. J. Williams, ed., Proc. SPIE1775, 206–212 (1992).
[Crossref]

Put, E.

G. Olbrechts, E. Put, K. Clays, A. Persoons, and N. Matsuda, “Probing of spatial orientational correlations between chromophores in polymer films by femtosecond hyper-Rayleigh scattering,” Chem. Phys. Lett. 253, 135–140 (1996).
[Crossref]

Put, E. J. H.

N. Matsuda, G. Olbrechts, E. J. H. Put, K. Clays, and A. Persoons, “Comparison between optical nonlinearity relaxation times from coherent second-harmonic generation and from incoherent hyper-Rayleigh scattering,” Appl. Phys. Lett. 69, 4145–4147 (1996).
[Crossref]

Reinhoudt, D.

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116, 9320–9323 (1994).
[Crossref]

Ruiter, A. G. T.

G. J. T. Heesink, A. G. T. Ruiter, N. F. vanHulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper-Rayleigh scattering,” Phys. Rev. Lett. 71, 999–1002 (1993).
[Crossref] [PubMed]

Samuel, I. D. W.

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with large octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[Crossref]

Samyn, C.

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116, 9320–9323 (1994).
[Crossref]

Schildkraut, J. S.

Siegman, A. E.

A. E. Siegman, Lasers (Oxford U. Press, Oxford, 1986).

Singer, K. D.

K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation,” J. Chem. Phys. 75, 3572–3580 (1981).
[Crossref]

Song, O. K.

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[Crossref]

Stammers, M. A.

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

Triest, M.

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[Crossref] [PubMed]

v. Hulst, N. F.

O. F. J. Noordman and N. F. v. Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities b of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
[Crossref]

vanHulst, N. F.

G. J. T. Heesink, A. G. T. Ruiter, N. F. vanHulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper-Rayleigh scattering,” Phys. Rev. Lett. 71, 999–1002 (1993).
[Crossref] [PubMed]

Verbiest, T.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[Crossref] [PubMed]

T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
[Crossref]

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116, 9320–9323 (1994).
[Crossref]

W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, “Large second-order optical polarizabilities in mixed-valence metal complexes,” Nature 363, 58–59 (1993).
[Crossref]

T. Verbiest, K. Clays, A. Persoons, F. Meyers, and J.-L. Brédas, “Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering,” Opt. Lett. 18, 525–527 (1993).
[Crossref] [PubMed]

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[Crossref] [PubMed]

T. Verbiest, E. Hendrickx, A. Persoons, and K. Clays, “Measurements of molecular hyperpolarizabilities using hyper-Rayleigh scattering,” in Nonlinear Optical Properties of Organic Materials V, D. J. Williams, ed., Proc. SPIE1775, 206–212 (1992).
[Crossref]

Volksen, W.

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[Crossref] [PubMed]

Walsh, C. A.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[Crossref]

Wang, C. H.

M. A. Pauley, H.-W. Guan, C. H. Wang, and A. K.-Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second-harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821–7829 (1996).
[Crossref]

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[Crossref]

Williams, D. J.

K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
[Crossref]

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[Crossref]

D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Wolff, J.

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116, 9320–9323 (1994).
[Crossref]

Wu, M.

K. Clays, M. Wu, and A. Persoons, “Femtosecond hyper-Rayleigh scattering study of spatial orientational correlations between chromophores,” J. Nonlinear Opt. Phys. Mater. 5, 59–71 (1996).
[Crossref]

Zyss, J.

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with large octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[Crossref]

Adv. Mater. (1)

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir–Blodgett film waveguides by mode conversion,” Adv. Mater. 4, 795–798 (1992).
[Crossref]

Appl. Phys. Lett. (2)

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[Crossref]

N. Matsuda, G. Olbrechts, E. J. H. Put, K. Clays, and A. Persoons, “Comparison between optical nonlinearity relaxation times from coherent second-harmonic generation and from incoherent hyper-Rayleigh scattering,” Appl. Phys. Lett. 69, 4145–4147 (1996).
[Crossref]

Chem. Phys. Lett. (3)

T. Verbiest and D. M. Burland, “The use of the Wagner function to describe poled-order relaxation processes in electrooptic polymers,” Chem. Phys. Lett. 236, 253–258 (1995).
[Crossref]

G. Olbrechts, E. Put, K. Clays, A. Persoons, and N. Matsuda, “Probing of spatial orientational correlations between chromophores in polymer films by femtosecond hyper-Rayleigh scattering,” Chem. Phys. Lett. 253, 135–140 (1996).
[Crossref]

O. F. J. Noordman and N. F. v. Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities b of fluorescent molecules,” Chem. Phys. Lett. 253, 145–150 (1996).
[Crossref]

Chem. Rev. (1)

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994).
[Crossref]

J. Am. Chem. Soc. (1)

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116, 9320–9323 (1994).
[Crossref]

J. Chem. Phys. (5)

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63, 2666–2682 (1975).
[Crossref]

K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation,” J. Chem. Phys. 75, 3572–3580 (1981).
[Crossref]

M. A. Pauley, H.-W. Guan, C. H. Wang, and A. K.-Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second-harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821–7829 (1996).
[Crossref]

R. Bersohn, Y.-H. Pao, and H. L. Frisch, “Double-quantum light scattering by molecules,” J. Chem. Phys. 45, 3184–3507 (1966).
[Crossref]

M. Kauranen and A. Persoons, “Theory of polarization measurements of second-order nonlinear light scattering,” J. Chem. Phys. 104, 3445–3456 (1996).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

K. Clays, M. Wu, and A. Persoons, “Femtosecond hyper-Rayleigh scattering study of spatial orientational correlations between chromophores,” J. Nonlinear Opt. Phys. Mater. 5, 59–71 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

O. K. Song, C. H. Wang, B. R. Cho, and J. T. Je, “Measurement of first-order hyperpolarizability of several barbituric acid derivatives in solution by hyper-Rayleigh scattering,” J. Phys. Chem. 99, 6808–6811 (1995).
[Crossref]

Nature (3)

C. Dhenaut, I. Ledoux, I. D. W. Samuel, J. Zyss, M. Bourgault, and H. L. Bozec, “Chiral metal complexes with large octupolar optical nonlinearities,” Nature 374, 339–342 (1995).
[Crossref]

W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, “Large second-order optical polarizabilities in mixed-valence metal complexes,” Nature 363, 58–59 (1993).
[Crossref]

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991).
[Crossref] [PubMed]

G. J. T. Heesink, A. G. T. Ruiter, N. F. vanHulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper-Rayleigh scattering,” Phys. Rev. Lett. 71, 999–1002 (1993).
[Crossref] [PubMed]

Rev. Sci. Instrum. (4)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190–2194 (1994).
[Crossref]

I. D. Morrison, R. G. Denning, W. M. Laidlaw, and M. A. Stammers, “Measurement of first hyperpolarizabilities by hyper-Rayleigh scattering,” Rev. Sci. Instrum. 67, 1445–1453 (1996).
[Crossref]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992).
[Crossref]

G. R. Meredith, “Small computer-based system for determination of second- and third-order optical nonlinearities,” Rev. Sci. Instrum. 53, 48–53 (1982).
[Crossref]

Science (2)

K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993).
[Crossref] [PubMed]

T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, “Exceptionally thermally stable polyimides for second-order nonlinear optical applications,” Science 268, 1604–1606 (1995).
[Crossref] [PubMed]

Other (6)

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley Interscience, New York, 1975).

C. A. Bosshard, “Optical and nonlinear optical properties of 2-cylcooctylamino-5-nitropyridine and 2-docosylamino-5-nitropyridine molecules, crystals and Langmuir–Blodgett films,” Ph.D. dissertation (Swiss Federal Institute of Technology, Lausanne, Switzerland, 1991).

K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, Part 3, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), pp. 455–498.

D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

T. Verbiest, E. Hendrickx, A. Persoons, and K. Clays, “Measurements of molecular hyperpolarizabilities using hyper-Rayleigh scattering,” in Nonlinear Optical Properties of Organic Materials V, D. J. Williams, ed., Proc. SPIE1775, 206–212 (1992).
[Crossref]

A. E. Siegman, Lasers (Oxford U. Press, Oxford, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the experimental setup for femtosecond HRS: AC, femtosecond autocorrelator; ASL, aspheric lens; B, beam sampler; C, chopper (1 kHz); H, half-wave plate; HV, high-voltage supply; INT, interference filter; LPF, low-wavelength-pass filter; M’s, mirrors; ND, neutral-density filter; P, femtosecond polarizer; PC, personal computer; PCL’s, plano-convex lenses; PD, photodiode; PMT, photomultiplier tube; PSD, phase-sensitive detector; REF, reference frequency; SIG, signal; X, x input (fundamental light intensity); Y, y input (HRS signal).

Fig. 2
Fig. 2

HRS signal for Crystal Violet in methanol at 293 K at different number densities in units of 1018 cm-3: a, 1.57; b, 1.33; c, 0.37; d, 0.25; e, 0.14; f, 0.13. The solid curves are fitted curves.

Fig. 3
Fig. 3

Quadratic coefficient obtained from the curves shown in Fig. 2 versus number density of Crystal Violet in methanol at 293 K.

Fig. 4
Fig. 4

Schematic of the essential change in the experimental setup to yield the femtosecond HRS setup: ASL, aspheric lens; CR, concave reflector; INT, interference filter; LPF, low-wavelength-pass filter; PCL’s, plano-convex lenses; PMT, photomultiplier tube; ref, reference frequency; 2ω, beam-waist diameter; f, focal length; PSD, phase-sensitive detection.

Fig. 5
Fig. 5

Intensity of the HRS signal as a function of position x for a, KTP crystal; b, DCANP LB film; c, pNA in PMMA.

Fig. 6
Fig. 6

NAC function of the HRS intensity fluctuations as a function of displacement ξ for a, KTP crystal; b, DCANP LB film; c, pNA in PMMA.

Fig. 7
Fig. 7

HRS intensities as a function of position for spin-coated polymer films (4.3 wt. % MONS in PMMA) after corona poling at a, 9 kV (high field strength); b, 8 kV (intermediate field strength); c, 0 kV (zero field strength).

Fig. 8
Fig. 8

NAC functions of the fluctuating HRS intensities for spin-coated polymer films (4.3 wt. % MONS in PMMA) at indicated corona voltages: a, 9 kV (high orienting field strength); b, 8 kV (intermediate orienting field strength); c, 0 kV (zero orienting field strength).

Fig. 9
Fig. 9

Reproducibility test and correlation between two consecutive measurements of a LB film of DCANP. The inset shows the consecutive primary data of the fluctuating intensities as a function of position.

Fig. 10
Fig. 10

NAC function of the fluctuation of the HRS intensity for a spin-coated film (4.3 wt. % MONS in PMMA) after corona poling at 9 kV at different times after poling: a, 0 days; b, 4 days; c, 5 days.

Fig. 11
Fig. 11

Temporal decay of the normalized correlation length ξcorr(t)/ξcorr(0). Different symbols are used for different samples. The sizes of the symbols indicate the relative estimated statistical uncertainty in correlation length and systematic uncertainty in measurement time owing to the number of data points to be acquired.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ=τ0[1+(4 ln 2β(ω)z/τ02)]1/2.
AC[I2ω(ξ)]=I2ω(x)I2ω(x+ξ),
NAC[δI2ω(ξ)]=δI2ω(x)δI2ω(x+ξ)δI2ω(x)2=I2ω(x)I2ω(x+ξ)-I2ω2I2ω(x)2-I2ω2.
ISHG,waveguide(t)=cE2ω2L2=c{E2ω,0 exp[-(t/τSHG)β]}2×{L0 exp[-(t/τHRS)]}2,

Metrics