Abstract

It has been commonly assumed that electrostatic interactions between chromophores that exhibit large second hyperpolarizabilities β can be neglected in estimating electro-optic and second-harmonic coefficients, which can be achieved by electric-field poling of chromophore-containing polymers. Macroscopic optical nonlinearity has been assumed to scale as μβ/molecular weight, where μ is the dipole moment. Synthesis of chromophores with μβ values of the order of 10-44 esu has led to expectations of electro-optic coefficients for organic materials that substantially exceed those of lithium niobate. Expected values have not been easily realized; thus the utility of the above-mentioned scaling factor or chromophore figure of merit has been brought into question. We demonstrate that macroscopic optical nonlinearities are attenuated at high chromophore loading for chromophores characterized by electrostatic interactions that, at close approach distances, exceed thermal energies (kT) and poling energies (μF), where F is the effective electric field.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal and C. Flytzanis, “Delocalization and superalternation effects in the nonlinear susceptibilities of one-dimensional systems,” Chem. Phys. Lett. 44, 366–370 (1976).
    [CrossRef]
  2. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991), pp. 1–307.
  3. A. F. Garito, K. Y. Wong, Y. M. Cai, H. T. Man, and O. Zamani-Khamiri, “Fundamental nonlinear optics issues in organic and polymer systems,” in Molecular Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 2–11 (1986).
    [CrossRef]
  4. J. R. Heflin, K. Y. Wong, O. Zamani-Kharmiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38, 1573–1576 (1986).
    [CrossRef]
  5. J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 45–56 (1995).
    [CrossRef]
  6. I. D. L. Albert, S. di Bella, D. R. Kanis, T. J. Marks, and M. A. Ratner, “Solvent effects on the molecular quadratic hyperpolarizabilities,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 21–25 (1995), pp. 57–65.
  7. D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
    [CrossRef]
  8. L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
    [CrossRef]
  9. C. R. Moylan, R. D. Miller, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical chromophores,” in Nonlinear Optical Properties of Organic Materials VIII, S. C. Yang and P. Chandresekhar, eds., Proc. SPIE2527, 150–162 (1995).
    [CrossRef]
  10. C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
    [CrossRef]
  11. M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.
  12. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE3006, 314–317 (1997).
    [CrossRef]
  13. R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Wilson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
    [CrossRef]
  14. L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486–1493 (1936).
    [CrossRef]
  15. D. Healy, P. R. Thomas, M. Szablewski, and G. H. Cross, “Molecular μβ figure-of-merit studies of solid solutions,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 32–40 (1995).
    [CrossRef]
  16. C. S. Willand and D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304–1310 (1987).
    [CrossRef]
  17. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
    [CrossRef]
  18. K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, and P. A. Cahill, 1989. “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 233–244 (1989).
    [CrossRef]
  19. H. E. Katz, M. L. Schilling, and G. E. Washington, “Solution-phase dielectric characterization of the 4-amino-4′-dicyanovinyl-azobenzene nonlinear-optical chromophore,” J. Opt. Soc. Am. B 7, 309–312 (1990).
    [CrossRef]
  20. T. Watanabe and S. Miyata, “Effect of crystallization process on the second harmonic generation of poly(oxyethylene)/p-nitroaniline systems,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 101–107 (1989).
    [CrossRef]
  21. R. D. Small, K. D. Singer, J. E. Sohn, M. G. Kuzyk, and S. J. Lalama, “Thin film processing of polymers for nonlinear optics,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 160–169 (1986).
    [CrossRef]
  22. K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
    [CrossRef]
  23. M. Amano, T. Kaino, F. Yamamoto, and Y. Takeuchi, “Second order nonlinear optical properties of polymers containing mesogenic side chains,” Mol. Cryst. Liq. Cryst. 182A, 81–90 (1990).
  24. B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173–5179 (1967).
    [CrossRef]
  25. F. London, “The general theory of molecular forces,” Trans. Faraday Soc. 33, 8–26 (1937).
    [CrossRef]
  26. J. N. Isrealachvili, Intermolecular and Surface Forces (Academic, London, 1985).
  27. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1976), pp. 1–395.
  28. R. H. Fowler, “A theory of the rotations of molecules in solids and of the dielectric constant of solids and liquids,” Proc. R. Soc. London Ser. A 149, 1–28 (1935).
    [CrossRef]
  29. P. Debye, “Molecular rotation in liquids,” Phys. Z. 36, 100–101 (1935).
  30. A. Piekara, “The existence of intermolecular coupling of the second kind in liquids,” Z. Phys. 108, 395–400 (1938).
    [CrossRef]
  31. A. Piekara, “A theory of electric polarization. Electro-optic Kerr effect and electrical saturation in liquids and solutions,” Proc. R. Soc. London Ser. A 172, 360–383 (1939).
    [CrossRef]
  32. M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
    [CrossRef]
  33. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
    [CrossRef]
  34. Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).
  35. V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
    [CrossRef]
  36. M. Ziari, S. Kalluri, S. Garner, W. H. Steier, Z. Liang, L. R. Dalton, and Y. Shi, “Novel electro-optic measurement technique for coplanar electrode poled polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 218–227 (1995).
    [CrossRef]
  37. S. Kalluri, S. Garner, M. Ziari, W. H. Steier, Y. Shi, and L. R. Dalton, “Simple two-slit interference electrooptic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films,” Appl. Phys. Lett. 69, 275–277 (1996).
    [CrossRef]
  38. C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
    [CrossRef]
  39. M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032–4035 (1992).
    [CrossRef]
  40. S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, and W. H. Steier, “1,3-Bis(dicyanomethylene)indane based second order NLO materials,” Chem. Mater. 8, 2539–2541 (1996).
    [CrossRef]
  41. S. Kalluri, A. Chen, V. Chuyanov, M. Ziari, W. H. Steier, and L. R. Dalton, “Integration of polymer electrooptic devices on non-planar silicon integrated circuits,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 375–383 (1995).
    [CrossRef]
  42. S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
    [CrossRef]
  43. A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
    [CrossRef]
  44. A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE3005, 65–76 (1997).
    [CrossRef]

1996 (5)

S. Kalluri, S. Garner, M. Ziari, W. H. Steier, Y. Shi, and L. R. Dalton, “Simple two-slit interference electrooptic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films,” Appl. Phys. Lett. 69, 275–277 (1996).
[CrossRef]

S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, and W. H. Steier, “1,3-Bis(dicyanomethylene)indane based second order NLO materials,” Chem. Mater. 8, 2539–2541 (1996).
[CrossRef]

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
[CrossRef]

C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
[CrossRef]

1995 (1)

L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

1994 (2)

D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
[CrossRef]

M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
[CrossRef]

1993 (2)

C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
[CrossRef]

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).

1992 (1)

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032–4035 (1992).
[CrossRef]

1990 (4)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

M. Amano, T. Kaino, F. Yamamoto, and Y. Takeuchi, “Second order nonlinear optical properties of polymers containing mesogenic side chains,” Mol. Cryst. Liq. Cryst. 182A, 81–90 (1990).

H. E. Katz, M. L. Schilling, and G. E. Washington, “Solution-phase dielectric characterization of the 4-amino-4′-dicyanovinyl-azobenzene nonlinear-optical chromophore,” J. Opt. Soc. Am. B 7, 309–312 (1990).
[CrossRef]

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Wilson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[CrossRef]

1989 (1)

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

1987 (2)

1986 (1)

J. R. Heflin, K. Y. Wong, O. Zamani-Kharmiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38, 1573–1576 (1986).
[CrossRef]

1976 (1)

G. P. Agrawal and C. Flytzanis, “Delocalization and superalternation effects in the nonlinear susceptibilities of one-dimensional systems,” Chem. Phys. Lett. 44, 366–370 (1976).
[CrossRef]

1967 (1)

B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173–5179 (1967).
[CrossRef]

1939 (1)

A. Piekara, “A theory of electric polarization. Electro-optic Kerr effect and electrical saturation in liquids and solutions,” Proc. R. Soc. London Ser. A 172, 360–383 (1939).
[CrossRef]

1938 (1)

A. Piekara, “The existence of intermolecular coupling of the second kind in liquids,” Z. Phys. 108, 395–400 (1938).
[CrossRef]

1937 (1)

F. London, “The general theory of molecular forces,” Trans. Faraday Soc. 33, 8–26 (1937).
[CrossRef]

1936 (1)

L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486–1493 (1936).
[CrossRef]

1935 (2)

R. H. Fowler, “A theory of the rotations of molecules in solids and of the dielectric constant of solids and liquids,” Proc. R. Soc. London Ser. A 149, 1–28 (1935).
[CrossRef]

P. Debye, “Molecular rotation in liquids,” Phys. Z. 36, 100–101 (1935).

Agrawal, G. P.

G. P. Agrawal and C. Flytzanis, “Delocalization and superalternation effects in the nonlinear susceptibilities of one-dimensional systems,” Chem. Phys. Lett. 44, 366–370 (1976).
[CrossRef]

Albert, I. D. L.

I. D. L. Albert, S. di Bella, D. R. Kanis, T. J. Marks, and M. A. Ratner, “Solvent effects on the molecular quadratic hyperpolarizabilities,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 21–25 (1995), pp. 57–65.

Amano, M.

M. Amano, T. Kaino, F. Yamamoto, and Y. Takeuchi, “Second order nonlinear optical properties of polymers containing mesogenic side chains,” Mol. Cryst. Liq. Cryst. 182A, 81–90 (1990).

Becker, M. W.

M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
[CrossRef]

Beeson, K. W.

K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
[CrossRef]

Bjorklund, G. C.

Bredas, J. L.

J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 45–56 (1995).
[CrossRef]

Cahill, P. A.

K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, and P. A. Cahill, 1989. “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 233–244 (1989).
[CrossRef]

Cai, Y. M.

A. F. Garito, K. Y. Wong, Y. M. Cai, H. T. Man, and O. Zamani-Khamiri, “Fundamental nonlinear optics issues in organic and polymer systems,” in Molecular Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 2–11 (1986).
[CrossRef]

Chastaing, E.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

Chen, A.

S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, and W. H. Steier, “1,3-Bis(dicyanomethylene)indane based second order NLO materials,” Chem. Mater. 8, 2539–2541 (1996).
[CrossRef]

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
[CrossRef]

S. Kalluri, A. Chen, V. Chuyanov, M. Ziari, W. H. Steier, and L. R. Dalton, “Integration of polymer electrooptic devices on non-planar silicon integrated circuits,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 375–383 (1995).
[CrossRef]

A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE3005, 65–76 (1997).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE3006, 314–317 (1997).
[CrossRef]

Chen, D.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE3006, 314–317 (1997).
[CrossRef]

Chen, G.

J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 45–56 (1995).
[CrossRef]

Chen, J.

A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE3005, 65–76 (1997).
[CrossRef]

Chen, M.

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032–4035 (1992).
[CrossRef]

Chollet, P. A.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).

Chuyanov, V.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

S. Kalluri, A. Chen, V. Chuyanov, M. Ziari, W. H. Steier, and L. R. Dalton, “Integration of polymer electrooptic devices on non-planar silicon integrated circuits,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 375–383 (1995).
[CrossRef]

A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE3005, 65–76 (1997).
[CrossRef]

Cross, G. H.

D. Healy, P. R. Thomas, M. Szablewski, and G. H. Cross, “Molecular μβ figure-of-merit studies of solid solutions,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 32–40 (1995).
[CrossRef]

Dalton, L. R.

A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
[CrossRef]

S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, and W. H. Steier, “1,3-Bis(dicyanomethylene)indane based second order NLO materials,” Chem. Mater. 8, 2539–2541 (1996).
[CrossRef]

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

S. Kalluri, S. Garner, M. Ziari, W. H. Steier, Y. Shi, and L. R. Dalton, “Simple two-slit interference electrooptic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films,” Appl. Phys. Lett. 69, 275–277 (1996).
[CrossRef]

L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
[CrossRef]

C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
[CrossRef]

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032–4035 (1992).
[CrossRef]

S. Kalluri, A. Chen, V. Chuyanov, M. Ziari, W. H. Steier, and L. R. Dalton, “Integration of polymer electrooptic devices on non-planar silicon integrated circuits,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 375–383 (1995).
[CrossRef]

A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE3005, 65–76 (1997).
[CrossRef]

M. Ziari, S. Kalluri, S. Garner, W. H. Steier, Z. Liang, L. R. Dalton, and Y. Shi, “Novel electro-optic measurement technique for coplanar electrode poled polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 218–227 (1995).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE3006, 314–317 (1997).
[CrossRef]

Debye, P.

P. Debye, “Molecular rotation in liquids,” Phys. Z. 36, 100–101 (1935).

Dentan, V.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

di Bella, S.

I. D. L. Albert, S. di Bella, D. R. Kanis, T. J. Marks, and M. A. Ratner, “Solvent effects on the molecular quadratic hyperpolarizabilities,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 21–25 (1995), pp. 57–65.

Diemeer, M. B. J.

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

Donckers, M. C. J. M.

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

Dumont, M.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

Ermer, S.

C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
[CrossRef]

C. R. Moylan, R. D. Miller, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical chromophores,” in Nonlinear Optical Properties of Organic Materials VIII, S. C. Yang and P. Chandresekhar, eds., Proc. SPIE2527, 150–162 (1995).
[CrossRef]

Ferm, P. M.

K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
[CrossRef]

Fetterman, H. R.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE3006, 314–317 (1997).
[CrossRef]

Flipse, M. C.

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

Flytzanis, C.

G. P. Agrawal and C. Flytzanis, “Delocalization and superalternation effects in the nonlinear susceptibilities of one-dimensional systems,” Chem. Phys. Lett. 44, 366–370 (1976).
[CrossRef]

Fowler, R. H.

R. H. Fowler, “A theory of the rotations of molecules in solids and of the dielectric constant of solids and liquids,” Proc. R. Soc. London Ser. A 149, 1–28 (1935).
[CrossRef]

Gadret, G.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).

Garito, A. F.

J. R. Heflin, K. Y. Wong, O. Zamani-Kharmiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38, 1573–1576 (1986).
[CrossRef]

A. F. Garito, K. Y. Wong, Y. M. Cai, H. T. Man, and O. Zamani-Khamiri, “Fundamental nonlinear optics issues in organic and polymer systems,” in Molecular Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 2–11 (1986).
[CrossRef]

Garner, S.

S. Kalluri, S. Garner, M. Ziari, W. H. Steier, Y. Shi, and L. R. Dalton, “Simple two-slit interference electrooptic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films,” Appl. Phys. Lett. 69, 275–277 (1996).
[CrossRef]

M. Ziari, S. Kalluri, S. Garner, W. H. Steier, Z. Liang, L. R. Dalton, and Y. Shi, “Novel electro-optic measurement technique for coplanar electrode poled polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 218–227 (1995).
[CrossRef]

A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE3005, 65–76 (1997).
[CrossRef]

Garner, S. M.

S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, and W. H. Steier, “1,3-Bis(dicyanomethylene)indane based second order NLO materials,” Chem. Mater. 8, 2539–2541 (1996).
[CrossRef]

Ghosen, R.

M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
[CrossRef]

Ghosn, R.

L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Goddard, W. A.

J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 45–56 (1995).
[CrossRef]

Hansen, J. P.

J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1976), pp. 1–395.

Harper, A. W.

L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Healy, D.

D. Healy, P. R. Thomas, M. Szablewski, and G. H. Cross, “Molecular μβ figure-of-merit studies of solid solutions,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 32–40 (1995).
[CrossRef]

Heflin, J. R.

J. R. Heflin, K. Y. Wong, O. Zamani-Kharmiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38, 1573–1576 (1986).
[CrossRef]

Hofstraat, J. W.

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

Holland, W. R.

K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, and P. A. Cahill, 1989. “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 233–244 (1989).
[CrossRef]

Horn, K. A.

K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
[CrossRef]

Isrealachvili, J. N.

J. N. Isrealachvili, Intermolecular and Surface Forces (Academic, London, 1985).

Jalali, B.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

Jen, A. K.-Y.

M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
[CrossRef]

Jurich, M. C.

Kaino, T.

M. Amano, T. Kaino, F. Yamamoto, and Y. Takeuchi, “Second order nonlinear optical properties of polymers containing mesogenic side chains,” Mol. Cryst. Liq. Cryst. 182A, 81–90 (1990).

Kajzar, F.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).

Kalluri, S.

S. Kalluri, S. Garner, M. Ziari, W. H. Steier, Y. Shi, and L. R. Dalton, “Simple two-slit interference electrooptic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films,” Appl. Phys. Lett. 69, 275–277 (1996).
[CrossRef]

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
[CrossRef]

S. Kalluri, A. Chen, V. Chuyanov, M. Ziari, W. H. Steier, and L. R. Dalton, “Integration of polymer electrooptic devices on non-planar silicon integrated circuits,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 375–383 (1995).
[CrossRef]

M. Ziari, S. Kalluri, S. Garner, W. H. Steier, Z. Liang, L. R. Dalton, and Y. Shi, “Novel electro-optic measurement technique for coplanar electrode poled polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 218–227 (1995).
[CrossRef]

Kanis, D. R.

D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
[CrossRef]

I. D. L. Albert, S. di Bella, D. R. Kanis, T. J. Marks, and M. A. Ratner, “Solvent effects on the molecular quadratic hyperpolarizabilities,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 21–25 (1995), pp. 57–65.

Katz, H. E.

H. E. Katz, M. L. Schilling, and G. E. Washington, “Solution-phase dielectric characterization of the 4-amino-4′-dicyanovinyl-azobenzene nonlinear-optical chromophore,” J. Opt. Soc. Am. B 7, 309–312 (1990).
[CrossRef]

K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, and P. A. Cahill, 1989. “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 233–244 (1989).
[CrossRef]

Kaviani, K.

A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
[CrossRef]

Khare, B. N.

B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173–5179 (1967).
[CrossRef]

Knapp, C. W.

K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
[CrossRef]

Kuzyk, M. G.

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, and P. A. Cahill, 1989. “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 233–244 (1989).
[CrossRef]

R. D. Small, K. D. Singer, J. E. Sohn, M. G. Kuzyk, and S. J. Lalama, “Thin film processing of polymers for nonlinear optics,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 160–169 (1986).
[CrossRef]

Lalama, S. J.

R. D. Small, K. D. Singer, J. E. Sohn, M. G. Kuzyk, and S. J. Lalama, “Thin film processing of polymers for nonlinear optics,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 160–169 (1986).
[CrossRef]

Lamers, J. C.

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

Lee, V. Y.

C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
[CrossRef]

Lengyel, G.

B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173–5179 (1967).
[CrossRef]

Leung, D. S.

C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
[CrossRef]

C. R. Moylan, R. D. Miller, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical chromophores,” in Nonlinear Optical Properties of Organic Materials VIII, S. C. Yang and P. Chandresekhar, eds., Proc. SPIE2527, 150–162 (1995).
[CrossRef]

Levy, Y.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

Liang, Z.

M. Ziari, S. Kalluri, S. Garner, W. H. Steier, Z. Liang, L. R. Dalton, and Y. Shi, “Novel electro-optic measurement technique for coplanar electrode poled polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 218–227 (1995).
[CrossRef]

Lliang, Z.

A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
[CrossRef]

London, F.

F. London, “The general theory of molecular forces,” Trans. Faraday Soc. 33, 8–26 (1937).
[CrossRef]

Lovejoy, S. M.

C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
[CrossRef]

C. R. Moylan, R. D. Miller, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical chromophores,” in Nonlinear Optical Properties of Organic Materials VIII, S. C. Yang and P. Chandresekhar, eds., Proc. SPIE2527, 150–162 (1995).
[CrossRef]

Lu, D.

J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 45–56 (1995).
[CrossRef]

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

A. F. Garito, K. Y. Wong, Y. M. Cai, H. T. Man, and O. Zamani-Khamiri, “Fundamental nonlinear optics issues in organic and polymer systems,” in Molecular Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 2–11 (1986).
[CrossRef]

Marder, S. R.

J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 45–56 (1995).
[CrossRef]

Marks, T. J.

D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
[CrossRef]

I. D. L. Albert, S. di Bella, D. R. Kanis, T. J. Marks, and M. A. Ratner, “Solvent effects on the molecular quadratic hyperpolarizabilities,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 21–25 (1995), pp. 57–65.

Marti-Carrera, F. I.

A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE3005, 65–76 (1997).
[CrossRef]

McComb, I. H.

C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
[CrossRef]

McDonald, I. R.

J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1976), pp. 1–395.

McFarland, M. J.

K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
[CrossRef]

Meyers, F.

J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 45–56 (1995).
[CrossRef]

Miller, R. D.

C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
[CrossRef]

C. R. Moylan, R. D. Miller, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical chromophores,” in Nonlinear Optical Properties of Organic Materials VIII, S. C. Yang and P. Chandresekhar, eds., Proc. SPIE2527, 150–162 (1995).
[CrossRef]

Mitra, S. S.

B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173–5179 (1967).
[CrossRef]

Miyata, S.

T. Watanabe and S. Miyata, “Effect of crystallization process on the second harmonic generation of poly(oxyethylene)/p-nitroaniline systems,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 101–107 (1989).
[CrossRef]

Moylan, C. R.

C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
[CrossRef]

C. R. Moylan, R. D. Miller, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical chromophores,” in Nonlinear Optical Properties of Organic Materials VIII, S. C. Yang and P. Chandresekhar, eds., Proc. SPIE2527, 150–162 (1995).
[CrossRef]

Mustacich, R. V.

L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

Nahata, A.

K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
[CrossRef]

Onsager, L.

L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486–1493 (1936).
[CrossRef]

Page, R. H.

Perry, J. W.

J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 45–56 (1995).
[CrossRef]

Piekara, A.

A. Piekara, “A theory of electric polarization. Electro-optic Kerr effect and electrical saturation in liquids and solutions,” Proc. R. Soc. London Ser. A 172, 360–383 (1939).
[CrossRef]

A. Piekara, “The existence of intermolecular coupling of the second kind in liquids,” Z. Phys. 108, 395–400 (1938).
[CrossRef]

Pierce, B. M.

J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 45–56 (1995).
[CrossRef]

Prasad, P. N.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991), pp. 1–307.

Ranon, P. M.

C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
[CrossRef]

Ratner, M. A.

D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
[CrossRef]

I. D. L. Albert, S. di Bella, D. R. Kanis, T. J. Marks, and M. A. Ratner, “Solvent effects on the molecular quadratic hyperpolarizabilities,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 21–25 (1995), pp. 57–65.

Reck, B.

Remple, A.

A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
[CrossRef]

Robin, P.

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

Sapochak, L. S.

M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
[CrossRef]

Schilling, M. L.

H. E. Katz, M. L. Schilling, and G. E. Washington, “Solution-phase dielectric characterization of the 4-amino-4′-dicyanovinyl-azobenzene nonlinear-optical chromophore,” J. Opt. Soc. Am. B 7, 309–312 (1990).
[CrossRef]

K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, and P. A. Cahill, 1989. “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 233–244 (1989).
[CrossRef]

Sen, A.

Shan, J.

K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
[CrossRef]

Shi, Y.

S. Kalluri, S. Garner, M. Ziari, W. H. Steier, Y. Shi, and L. R. Dalton, “Simple two-slit interference electrooptic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films,” Appl. Phys. Lett. 69, 275–277 (1996).
[CrossRef]

A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
[CrossRef]

L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
[CrossRef]

C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
[CrossRef]

M. Ziari, S. Kalluri, S. Garner, W. H. Steier, Z. Liang, L. R. Dalton, and Y. Shi, “Novel electro-optic measurement technique for coplanar electrode poled polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 218–227 (1995).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE3006, 314–317 (1997).
[CrossRef]

Shi, Y. Q.

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032–4035 (1992).
[CrossRef]

Singer, K. D.

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, and P. A. Cahill, 1989. “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 233–244 (1989).
[CrossRef]

R. D. Small, K. D. Singer, J. E. Sohn, M. G. Kuzyk, and S. J. Lalama, “Thin film processing of polymers for nonlinear optics,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 160–169 (1986).
[CrossRef]

Small, R. D.

R. D. Small, K. D. Singer, J. E. Sohn, M. G. Kuzyk, and S. J. Lalama, “Thin film processing of polymers for nonlinear optics,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 160–169 (1986).
[CrossRef]

Sohn, J. E.

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

R. D. Small, K. D. Singer, J. E. Sohn, M. G. Kuzyk, and S. J. Lalama, “Thin film processing of polymers for nonlinear optics,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 160–169 (1986).
[CrossRef]

Steier, W. H.

S. Kalluri, S. Garner, M. Ziari, W. H. Steier, Y. Shi, and L. R. Dalton, “Simple two-slit interference electrooptic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films,” Appl. Phys. Lett. 69, 275–277 (1996).
[CrossRef]

S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, and W. H. Steier, “1,3-Bis(dicyanomethylene)indane based second order NLO materials,” Chem. Mater. 8, 2539–2541 (1996).
[CrossRef]

A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
[CrossRef]

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
[CrossRef]

C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
[CrossRef]

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032–4035 (1992).
[CrossRef]

S. Kalluri, A. Chen, V. Chuyanov, M. Ziari, W. H. Steier, and L. R. Dalton, “Integration of polymer electrooptic devices on non-planar silicon integrated circuits,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 375–383 (1995).
[CrossRef]

A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE3005, 65–76 (1997).
[CrossRef]

M. Ziari, S. Kalluri, S. Garner, W. H. Steier, Z. Liang, L. R. Dalton, and Y. Shi, “Novel electro-optic measurement technique for coplanar electrode poled polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 218–227 (1995).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE3006, 314–317 (1997).
[CrossRef]

Sun, S.

S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, and W. H. Steier, “1,3-Bis(dicyanomethylene)indane based second order NLO materials,” Chem. Mater. 8, 2539–2541 (1996).
[CrossRef]

A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE3005, 65–76 (1997).
[CrossRef]

Swalen, J. D.

Szablewski, M.

D. Healy, P. R. Thomas, M. Szablewski, and G. H. Cross, “Molecular μβ figure-of-merit studies of solid solutions,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 32–40 (1995).
[CrossRef]

Takeuchi, Y.

M. Amano, T. Kaino, F. Yamamoto, and Y. Takeuchi, “Second order nonlinear optical properties of polymers containing mesogenic side chains,” Mol. Cryst. Liq. Cryst. 182A, 81–90 (1990).

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

Thomas, P. R.

D. Healy, P. R. Thomas, M. Szablewski, and G. H. Cross, “Molecular μβ figure-of-merit studies of solid solutions,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 32–40 (1995).
[CrossRef]

Todorowa, O.

C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
[CrossRef]

Twieg, R. J.

C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
[CrossRef]

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Wilson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[CrossRef]

C. R. Moylan, R. D. Miller, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical chromophores,” in Nonlinear Optical Properties of Organic Materials VIII, S. C. Yang and P. Chandresekhar, eds., Proc. SPIE2527, 150–162 (1995).
[CrossRef]

Van der Linden, G. M.

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

Van der Vorst, J. M.

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

Van Gassel, R. A. P.

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

Veenis, W. J.

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE3006, 314–317 (1997).
[CrossRef]

Washington, G. E.

Watanabe, T.

T. Watanabe and S. Miyata, “Effect of crystallization process on the second harmonic generation of poly(oxyethylene)/p-nitroaniline systems,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 101–107 (1989).
[CrossRef]

Willand, C. S.

C. S. Willand and D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304–1310 (1987).
[CrossRef]

Williams, D. J.

C. S. Willand and D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304–1310 (1987).
[CrossRef]

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991), pp. 1–307.

Wilson, C. G.

Wolk, G. L.

K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, and P. A. Cahill, 1989. “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 233–244 (1989).
[CrossRef]

Wong, K. Y.

J. R. Heflin, K. Y. Wong, O. Zamani-Kharmiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38, 1573–1576 (1986).
[CrossRef]

A. F. Garito, K. Y. Wong, Y. M. Cai, H. T. Man, and O. Zamani-Khamiri, “Fundamental nonlinear optics issues in organic and polymer systems,” in Molecular Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 2–11 (1986).
[CrossRef]

Woudenberg, R. H.

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

Wu, B.

C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
[CrossRef]

Wu, C.

K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
[CrossRef]

Xu, C.

M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
[CrossRef]

C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
[CrossRef]

Yamamoto, F.

M. Amano, T. Kaino, F. Yamamoto, and Y. Takeuchi, “Second order nonlinear optical properties of polymers containing mesogenic side chains,” Mol. Cryst. Liq. Cryst. 182A, 81–90 (1990).

Yardley, J. T.

K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
[CrossRef]

Yu, L. P.

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032–4035 (1992).
[CrossRef]

Zamani-Khamiri, O.

A. F. Garito, K. Y. Wong, Y. M. Cai, H. T. Man, and O. Zamani-Khamiri, “Fundamental nonlinear optics issues in organic and polymer systems,” in Molecular Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 2–11 (1986).
[CrossRef]

Zamani-Kharmiri, O.

J. R. Heflin, K. Y. Wong, O. Zamani-Kharmiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38, 1573–1576 (1986).
[CrossRef]

Zhang, C.

S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, and W. H. Steier, “1,3-Bis(dicyanomethylene)indane based second order NLO materials,” Chem. Mater. 8, 2539–2541 (1996).
[CrossRef]

Ziari, M.

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

S. Kalluri, S. Garner, M. Ziari, W. H. Steier, Y. Shi, and L. R. Dalton, “Simple two-slit interference electrooptic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films,” Appl. Phys. Lett. 69, 275–277 (1996).
[CrossRef]

L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

M. Ziari, S. Kalluri, S. Garner, W. H. Steier, Z. Liang, L. R. Dalton, and Y. Shi, “Novel electro-optic measurement technique for coplanar electrode poled polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 218–227 (1995).
[CrossRef]

S. Kalluri, A. Chen, V. Chuyanov, M. Ziari, W. H. Steier, and L. R. Dalton, “Integration of polymer electrooptic devices on non-planar silicon integrated circuits,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 375–383 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990).
[CrossRef]

S. Kalluri, S. Garner, M. Ziari, W. H. Steier, Y. Shi, and L. R. Dalton, “Simple two-slit interference electrooptic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films,” Appl. Phys. Lett. 69, 275–277 (1996).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

C. S. Willand and D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304–1310 (1987).
[CrossRef]

Chem. Mater. (3)

M. W. Becker, L. S. Sapochak, R. Ghosen, C. Xu, L. R. Dalton, Y. Shi, W. H. Steier, and A. K.-Y. Jen, “Large and stable nonlinear optical effects observed for a polyimide covalently incorporating a nonlinear optical chromophore,” Chem. Mater. 6, 104–106 (1994).
[CrossRef]

L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. R. Fetterman, Y. Shi, and R. V. Mustacich, “Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics,” Chem. Mater. 7, 1060–1081 (1995).
[CrossRef]

S. Sun, C. Zhang, L. R. Dalton, S. M. Garner, A. Chen, and W. H. Steier, “1,3-Bis(dicyanomethylene)indane based second order NLO materials,” Chem. Mater. 8, 2539–2541 (1996).
[CrossRef]

Chem. Phys. Lett. (1)

G. P. Agrawal and C. Flytzanis, “Delocalization and superalternation effects in the nonlinear susceptibilities of one-dimensional systems,” Chem. Phys. Lett. 44, 366–370 (1976).
[CrossRef]

Chem. Rev. (1)

D. R. Kanis, M. A. Ratner, and T. J. Marks, “Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects,” Chem. Rev. 94, 195–242 (1994).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. Kalluri, M. Ziari, A. Chen, V. Chuyanov, W. H. Steier, D. Chen, B. Jalali, H. R. Fetterman, and L. R. Dalton, “Monolithic integration of waveguide polymer electrooptic modulators on VLSI circuitry,” IEEE Photonics Technol. Lett. 8, 644–656 (1996).
[CrossRef]

J. Am. Chem. Soc. (1)

L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486–1493 (1936).
[CrossRef]

J. Chem. Phys. (1)

B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173–5179 (1967).
[CrossRef]

J. Electrochem. Soc. (1)

A. Chen, K. Kaviani, A. Remple, S. Kalluri, W. H. Steier, Y. Shi, Z. Lliang, and L. R. Dalton, “Optimized oxygen plasma etching of polyurethane based electrooptic polymers for low loss waveguide fabrication,” J. Electrochem. Soc. 143, 3648–3651 (1996).
[CrossRef]

J. Opt. Soc. Am. B (3)

Macromolecules (2)

C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, “Stabilization of the dipole alignment of poled nonlinear optical polymers by ultrastructure synthesis,” Macromolecules 26, 5303–5309 (1993).
[CrossRef]

M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, “Thermosetting polyurethanes with stable and large second-order optical nonlinearity,” Macromolecules 25, 4032–4035 (1992).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

C. R. Moylan, I. H. McComb, R. D. Miller, V. Y. Lee, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical materials,” Mol. Cryst. Liq. Cryst. 283, 115–118 (1996).
[CrossRef]

M. Amano, T. Kaino, F. Yamamoto, and Y. Takeuchi, “Second order nonlinear optical properties of polymers containing mesogenic side chains,” Mol. Cryst. Liq. Cryst. 182A, 81–90 (1990).

Mol. Cryst. Liq. Cryst. Sci. Technol. B (1)

Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol. B 4, 1–19 (1993).

Opt. Commun. (1)

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989).
[CrossRef]

Phys. Rev. B (1)

J. R. Heflin, K. Y. Wong, O. Zamani-Kharmiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38, 1573–1576 (1986).
[CrossRef]

Phys. Z. (1)

P. Debye, “Molecular rotation in liquids,” Phys. Z. 36, 100–101 (1935).

Proc. R. Soc. London Ser. A (2)

A. Piekara, “A theory of electric polarization. Electro-optic Kerr effect and electrical saturation in liquids and solutions,” Proc. R. Soc. London Ser. A 172, 360–383 (1939).
[CrossRef]

R. H. Fowler, “A theory of the rotations of molecules in solids and of the dielectric constant of solids and liquids,” Proc. R. Soc. London Ser. A 149, 1–28 (1935).
[CrossRef]

Trans. Faraday Soc. (1)

F. London, “The general theory of molecular forces,” Trans. Faraday Soc. 33, 8–26 (1937).
[CrossRef]

Z. Phys. (1)

A. Piekara, “The existence of intermolecular coupling of the second kind in liquids,” Z. Phys. 108, 395–400 (1938).
[CrossRef]

Other (17)

M. Ziari, S. Kalluri, S. Garner, W. H. Steier, Z. Liang, L. R. Dalton, and Y. Shi, “Novel electro-optic measurement technique for coplanar electrode poled polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 218–227 (1995).
[CrossRef]

J. N. Isrealachvili, Intermolecular and Surface Forces (Academic, London, 1985).

J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1976), pp. 1–395.

K. D. Singer, W. R. Holland, M. G. Kuzyk, G. L. Wolk, H. E. Katz, M. L. Schilling, and P. A. Cahill, 1989. “Second-order nonlinear optical devices in poled polymers,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 233–244 (1989).
[CrossRef]

J. W. Perry, S. R. Marder, F. Meyers, D. Lu, G. Chen, W. A. Goddard, J. L. Bredas, and B. M. Pierce, “Hyperpolarizabilities of push–pull polyenes,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 45–56 (1995).
[CrossRef]

I. D. L. Albert, S. di Bella, D. R. Kanis, T. J. Marks, and M. A. Ratner, “Solvent effects on the molecular quadratic hyperpolarizabilities,” in Polymers for Second-Order Nonlinear Optics, G. F. Lindsay and K. D. Singer, eds., ACS Symp. Ser.601, 21–25 (1995), pp. 57–65.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991), pp. 1–307.

A. F. Garito, K. Y. Wong, Y. M. Cai, H. T. Man, and O. Zamani-Khamiri, “Fundamental nonlinear optics issues in organic and polymer systems,” in Molecular Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 2–11 (1986).
[CrossRef]

M. C. Flipse, J. M. Van der Vorst, J. W. Hofstraat, R. H. Woudenberg, R. A. P. Van Gassel, J. C. Lamers, G. M. Van der Linden, W. J. Veenis, M. B. J. Diemeer, and M. C. J. M. Donckers, “Recent progress in polymer based electro-optic modulators: materials and technology,” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y. C. Lee, eds. (Kluwer, Dordrecht, The Netherlands, 1996), pp. 237–246.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “High-bandwidth polymer modulators,” in Optoelectronic Integrated Circuits, Y. Park and R. V. Ramaswamy, eds., Proc. SPIE3006, 314–317 (1997).
[CrossRef]

C. R. Moylan, R. D. Miller, R. J. Twieg, S. Ermer, S. M. Lovejoy, and D. S. Leung, “Defeating tradeoffs for nonlinear optical chromophores,” in Nonlinear Optical Properties of Organic Materials VIII, S. C. Yang and P. Chandresekhar, eds., Proc. SPIE2527, 150–162 (1995).
[CrossRef]

T. Watanabe and S. Miyata, “Effect of crystallization process on the second harmonic generation of poly(oxyethylene)/p-nitroaniline systems,” in Nonlinear Optical Properties of Organic Materials II, H. R. Schlossberg and R. V. Wick, eds., Proc. SPIE1147, 101–107 (1989).
[CrossRef]

R. D. Small, K. D. Singer, J. E. Sohn, M. G. Kuzyk, and S. J. Lalama, “Thin film processing of polymers for nonlinear optics,” in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, G. Khanarian, ed., Proc. SPIE682, 160–169 (1986).
[CrossRef]

K. W. Beeson, P. M. Ferm, K. A. Horn, C. W. Knapp, M. J. McFarland, A. Nahata, J. Shan, C. Wu, and J. T. Yardley, “Polymeric electro-optic materials and devices: meeting the challenges of practical applications,” in Nonlinear Optical Properties of Organic Materials VI, G. R. Moehlmann, ed., Proc. SPIE2025, 488–498 (1993).
[CrossRef]

D. Healy, P. R. Thomas, M. Szablewski, and G. H. Cross, “Molecular μβ figure-of-merit studies of solid solutions,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 32–40 (1995).
[CrossRef]

S. Kalluri, A. Chen, V. Chuyanov, M. Ziari, W. H. Steier, and L. R. Dalton, “Integration of polymer electrooptic devices on non-planar silicon integrated circuits,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Moehlmann, ed., Proc. SPIE2527, 375–383 (1995).
[CrossRef]

A. Chen, V. Chuyanov, F. I. Marti-Carrera, S. Garner, W. H. Steier, J. Chen, S. Sun, and L. R. Dalton, “Integrated power waveguide mode size transformer with a vertical taper for improved fiber coupling,” in Opto-Electronic Interconnects and Packaging IV, R. T. Chen and P. S. Guilfoyle, eds., Proc. SPIE3005, 65–76 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Representative high μβ chromophores. Chromophores studied extensively here are denoted DR, ISX, and TCI and defined in text.

Fig. 2
Fig. 2

Coordinate system defined by an electric poling field and two interacting chromophores. Two chromophores are related to each other either by the Euler rotation matrix R(Ω) or by the angle ϕ. The approximations of London lead to the latter case, whereas the former permits explicit consideration of molecules of nonspherical shape. The rotation matrix R(Ω1) or the angle θ relates a chromophore to the applied poling field (laboratory axis coordinate system). R is the distance between the center of mass of two chromophores; when the averaging approximations of London are employed, it also represents the average separation of chromophores in an ensemble of chromophores.

Fig. 3
Fig. 3

Top, theoretical plots of [1-L2(W/kT)] versus average chromophore separation R. Calculations are for μ values of 5.0 (diamonds), 7.5 (squares), and 10.0 (crosses) D and for α=3.8 10-23 cm3 and I=8.3×10-19 J. The calculations assume spherically symmetrical chromophores. Bottom, theoretical plots of normalized electro-optic coefficients versus chromophore number density. The symbols have the same meaning as those above.

Fig. 4
Fig. 4

Normalized electro-optic coefficient versus chromophore number density. Theoretical (curve) and experimental (symbols) data for the DR chromophore of Fig. 1. See text for discussion.

Fig. 5
Fig. 5

Normalized electro-optic coefficient versus chromophore number density. Theoretical (curve) and experimental (symbols) data for the ISX chromophore of Fig. 1 are given. See text for discussion.

Fig. 6
Fig. 6

Synthesis of derivatized TCI.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

r33=[2wρNAf(0)2f(ω)2Ep(μβ/MW)]/(15kTn4),
r33=|2Nβf(ω1)f(ω2)f(ω3)cos3 θ/(ne)4|,
G(Ω, Ep)=exp[-U(Ω, Ep)/kT],
cosn θ=Ln[μf(0)Ep/kT]=exp[-μf(0)Ep cos θ/kT]cosnθ sin θdθ/
 exp[-μf(0)Ep cos θ/kT]sin θdθ,
cos θ=L1(x)=coth(x)-(1/x)=P1(cos θ),
cos2 θ=L2(x)=1+(2/x2)-(2/x)coth(x)=(1/3)(2P2(cos θ)+1),
cos3 θ=L3(x)=(1+6/x2)coth(x)-(3/x)(1+2/x2)
=(1/5)(2P3(cos θ)+3(P1(cos θ)).
L1(x)=(x/3)-(x3/45)+(2x5/945),
L3(x)=L1(x)(1-6/x2)-(2/x)=(x/5)-(x3/105).
cos3 θ=μf(0)Ep/5kT,
cos3 θ=μf(0)Ep/5kT-(1/105){[μf(0)Ep/5kT]3+8[μf(0)Ep/5kT][Δα(Ep)2/2kT]}.
W=(1/R6)[(2μ4/3kT)+2μ2α+3Iα2/4],
U(Ω, Ep)=-μf(0)Ep cos θ-W cos ϕ.
cos3 θ=[μEpf(0)/5kT][1-L2(W/kT)],

Metrics