Abstract

We have investigated electrical conduction phenomena during high-electric-field poling of a standard covalently functionalized DR-1 side-chain polymer. We performed electric current and second-harmonic measurements simultaneously to derive the effective internal field strength. Various metals and transparent indium tin oxide were used as electrodes. Current densities appeared to be interface (electrode) limited, with little dependence on the work function of the metal for the top electrode (Bardeen barrier at the electrode–dielectric interface), whereas for the bottom electrode–dielectric interface a dependence on the work function of the metal was observed. The field dependence of the current density was found to be Schottky charge emission for medium field strengths (EPOL100 V/μm), whereas it was dominated by Fowler–Nordheim tunneling at higher poling fields. In the presence of an additional inorganic barrier layer, significant suppression of tunneling was observed, which led to a reduced probability of singular breakdown events and shifted the limit of avalanche breakdown to higher internal effective poling field strengths.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
    [CrossRef]
  2. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
    [CrossRef]
  3. M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
    [CrossRef]
  4. V. P. Rao, Y. M. Cai, and A. K.-Y. Jen, “New developments in thermally stable second order nonlinear optical chromophores and electro-optic polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Möhlmann, ed., Proc. SPIE 2527, 84 (1995).
    [CrossRef]
  5. L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
    [CrossRef]
  6. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
    [CrossRef]
  7. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G. Higgins, and A. Dienes, “Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures,” J. Opt. Soc. Am. B 6, 733 (1989).
    [CrossRef]
  8. H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037 (1990).
    [CrossRef]
  9. S. Herminghaus, B. A. Smith, and J. D. Swalen, “Electro-optic coefficients in electric-field-poled polymer waveguides,” J. Opt. Soc. Am. B 8, 2311 (1991).
    [CrossRef]
  10. D. Morichère, P.-A. Chollet, W. Fleming, M. Jurich, B. A. Smith, and J. D. Swalen, “Electro-optic effects in two tolane side-chain nonlinear-optical polymers: comparison between measured coefficients and second-harmonic generation,” J. Opt. Soc. Am. B 10, 1894 (1993).
    [CrossRef]
  11. R. A. Hill, A. Knoesen, and M. A. Mortazavi, “Corona poling of nonlinear polymer thin films for electro-optic modulators,” Appl. Phys. Lett. 65, 1733 (1994).
    [CrossRef]
  12. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
    [CrossRef]
  13. S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949 (1991).
    [CrossRef]
  14. M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volsen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471 (1993).
    [CrossRef]
  15. W. Ren, S. Bauer, S. Yilmaz, W. Wirges, and R. Gerhard-Multhaupt, “Optimized poling of nonlinear optical polymers based on dipole-orientation and dipole-relaxation studies,” J. Appl. Phys. 75, 7211 (1994).
    [CrossRef]
  16. K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267 (1994).
    [CrossRef]
  17. A. Otomo, G. I. Stegeman, W. H. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389 (1994).
    [CrossRef]
  18. M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys. 104, 6834 (1996).
    [CrossRef]
  19. F. Garten, A. R. Schlatmann, R. E. Gill, J. Vrijmoeth, T. M. Klapwijk, and G. Hadziioannou, “Light emission in reverse bias operation from poly(3-octylthiophene)-based light emitting diodes,” Appl. Phys. Lett. 66, 2540 (1995).
    [CrossRef]
  20. M. Sprave, R. Blum, and M. Eich, “High electric field conduction mechanisms in electrode poling of electro-optic polymers,” Appl. Phys. Lett. 69, 2962 (1996); 70, 2056 (1997).
    [CrossRef]
  21. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
  22. J. Lindmayer, “Current transient in insulators,” J. Appl. Phys. 36, 196 (1965).
    [CrossRef]
  23. A. K. Jonscher and R. M. Hill, “Electrical conduction in disordered nonmetallic films,” in Physics of Thin Films, G. Hass, M. H. Francombe, and R. W. Hoffmann, eds. (Academic, New York, 1975), Vol. 8, pp. 169–249.
  24. A. J. Heeger, I. D. Parker, and Y. Yang, “Carrier injection into semiconducting polymers: Fowler–Nordheim field-emission tunneling,” Synth. Met. 67, 23 (1994).
    [CrossRef]
  25. H. Bässler, M. Gailberger, R. F. Mahrt, J. M. Oberski, and G. Weiser, “Exciton versus band description of the absorption, luminescence and electroabsorption of poly(phenylphenylenevinylene) and poly(dodecylthiophene),” Synth. Met. 49–50, 341 (1992).
    [CrossRef]
  26. K. Pakbaz, C. H. Lee, A. J. Heeger, T. W. Hagler, and D. McBranch, “Nature of the primary photoexcitations in poly(arylene-vinylenes),” Synth. Met. 64, 295 (1994).
    [CrossRef]
  27. N. F. Mott, “Conduction in non-crystalline systems. I. Localized electronic states in disordered systems,” Philos. Mag. 17, 1259 (1968).
    [CrossRef]
  28. M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, and H. Bässler, “Disorder in charge transport in doped polymers,” Adv. Mater. 6, 199 (1994).
    [CrossRef]
  29. O. L. Curtis, Jr., and J. R. Srour, “The multiple-trapping model and hole transport in SiO2,” J. Appl. Phys. 48, 3819 (1977).
    [CrossRef]
  30. G. M. Sessler, “Physical principles of electrets,” in Electrets, G. Sessler, ed. (Springer-Verlag, Heidelberg, 1980), pp. 13–80.
  31. N. F. Mott, “Conduction in non-crystalline systems. III. Localized states in a pseudogap and near extremities of conduction and valence bands,” Philos. Mag. 19, 835 (1969).
    [CrossRef]
  32. J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev. 71, 717 (1947).
    [CrossRef]
  33. H. K. Henisch, Rectifying Semi-Conductor Contacts (Oxford U. Press, London, 1957).
  34. F. Flores and R. Miranda, “Tuning Schottky barriers by atomic layer control at metal–semiconductor interfaces,” Adv. Mater. 6, 540 (1994).
    [CrossRef]
  35. M. Ieda, “Electrical conduction and carrier traps in polymeric materials,” IEEE Trans. Electr. Insul. 19, 162 (1984).
    [CrossRef]
  36. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
  37. J. Bardeen and W. Shockley, “Deformation potentials and mobilities in nonpolar crystals,” Phys. Rev. 80, 72 (1950).
    [CrossRef]
  38. E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors,” Phys. Rev. 77, 388 (1950).
    [CrossRef]
  39. F. W. Schmidlin, “Theory of trap-controlled photoconduction,” Phys. Rev. B 16, 2362 (1977).
    [CrossRef]
  40. H. Bässler, “Charge transport in disordered organic photoconductors,” Phys. Status Solidi B 175, 15 (1993).
    [CrossRef]
  41. J. Frenkel, “On pre-breakdown phenomena in insulators and electronic semiconductors,” Phys. Rev. 54, 647 (1938).
    [CrossRef]
  42. R. M. Hill, “Poole–Frenkel-conduction in amorphous solids,” Philos. Mag. 23, 59 (1971).
    [CrossRef]
  43. N. F. Mott, “Conduction in non-crystalline systems. VII. Non-ohmic behaviour and switching,” Philos. Mag. 24, 911 (1971).
    [CrossRef]
  44. J. Antula, “Hot-electron concept for Poole–Frenkel conduction in amorphous dielectric solids,” J. Appl. Phys. 43, 4663 (1972).
    [CrossRef]
  45. A. C. Lilly, Jr., and J. R. McDowell, “High-field conduction in films of Mylar and Teflon,” J. Appl. Phys. 39, 141 (1968).
    [CrossRef]
  46. A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal–semiconductor systems,” J. Appl. Phys. 36, 3212 (1965).
    [CrossRef]
  47. W. Schottky, “Über kalte und warme Elektronenentladungen,” Z. Phys. 14, 63 (1923).
    [CrossRef]
  48. W. Schottky, “Vereinfachte und erweiterte Theorie der Randschichtgleichrichter,” Z. Phys. 118, 539 (1942).
    [CrossRef]
  49. J. M. Andrews and M. P. Lepselter, “Reverse current-voltage characteristics of metal-silicide Schottky diodes,” Solid-State Electron. 12, 695 (1966).
  50. R. B. Schilling and H. Schachter, “Neglecting diffusion in space-charge-limited currents,” J. Appl. Phys. 38, 841 (1967).
    [CrossRef]
  51. P. N. Murgatroyd, “Saturation of reservoir contacts,” Phys. Status Solidi A 6, 217 (1971).
    [CrossRef]
  52. L. Nordheim, “Die Theorie der Elektronenemission der Metalle,” Phys. Z. 30, 177 (1929).
  53. I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. 75, 1656 (1994).
    [CrossRef]
  54. J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581 (1963).
    [CrossRef]
  55. J. van Turnhout, “Thermally stimulated discharge of electrets,” in Electrets, G. Sessler, ed. (Springer-Verlag, Heidelberg, 1980), pp. 81–205.
  56. A. Thielen, J. Niezette, G. Feyder, and J. Vanderschueren, “Thermally stimulated current study of space charge formation and contact effects in metal–polyethylene terephthalate film–metal systems,” J. Phys. Chem. Solids 57, 1567 (1996).
    [CrossRef]
  57. J. A. Giacometti, A. S. De Reggi, G. T. Davis, and B. Dickens, “Thermal pulse study of the electric polarization in a copolymer of vinylidene cyanide and vinyl acetate,” J. Appl. Phys. 80, 6407 (1996).
    [CrossRef]
  58. Ch. Joubert, A. Béroual, and G. Rojat, “Electric field and equivalent circuit in all-film capacitors,” J. Appl. Phys. 81, 6579 (1997).
    [CrossRef]
  59. D. Schroeder, Modelling of Interface Carrier Transport for Device Simulation, Computational Microelectronics Series (Springer-Verlag, Vienna, 1994).
  60. T. A. Pasmore, J. D. Harper, J. Talbot, and H. S. Lackritz, “Monte Carlo simulations of charge transport through doped polymer thin films for second order nonlinear optics,” Nonlinear Opt. 10, 295 (1995).
  61. Spin-on glass, Accuglass 512, from Allied Signal Inc., Milpitas, Calif.
  62. Obtained from IBM Almaden Research Center, San Jose, Calif.
  63. G. Lengyel, “Schottky emission and conduction in some organic insulating materials,” J. Appl. Phys. 37, 807 (1966).
    [CrossRef]
  64. J. Vanderschueren and A. Linkens, “Nature of transient currents in polymers,” J. Appl. Phys. 49, 4195 (1978).
    [CrossRef]
  65. M. E. Baird, “Determination of dielectric behavior at low frequencies from measurements of anomalous charging and discharging currents,” Rev. Mod. Phys. 40, 219 (1968).
    [CrossRef]
  66. M. Homann and H. Kliem, “Relaxational polarization and charge injection in thin films of silicon nitride,” Microelectron. J. 25, 559 (1994).
    [CrossRef]
  67. G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062 (1977).
    [CrossRef]
  68. H. J. Wintle, “Schottky injection currents in insulators: the effect of space charge on the time dependence,” IEEE Trans. Electr. Insul. 12, 424 (1977).
    [CrossRef]
  69. D. K. Davies, “Field stimulated interfacial electron transfer,” Proc. Inst. Electr. Eng. 128, 153 (1981).
  70. G. M. Sessler, B. Hahn, and D. Yoon, “Electrical conduction in polyimide films,” J. Appl. Phys. 60, 318 (1986).
    [CrossRef]
  71. S. Yee, R. A. Oriani, and M. Stratmann, “Application of a Kelvin microprobe to the corrosion of metals in humid atmopheres,” J. Electrochem. Soc. 138, 55 (1991).
    [CrossRef]
  72. P. W. Atkins, Physical Chemistry (Oxford U. Press, Oxford, 1990).
  73. D. Vuillaume, C. Boulas, J. Collet, J. V. Davidovits, and F. Rondelez, “Organic insulating films of nanometer thicknesses,” Appl. Phys. Lett. 69, 1646 (1996).
    [CrossRef]
  74. T. J. Lewis, “The role of electrodes in conduction and breakdown phenomena in solid dielectrics,” IEEE Trans. Electr. Insul. 19, 210 (1984).
    [CrossRef]

1997

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
[CrossRef]

Ch. Joubert, A. Béroual, and G. Rojat, “Electric field and equivalent circuit in all-film capacitors,” J. Appl. Phys. 81, 6579 (1997).
[CrossRef]

1996

A. Thielen, J. Niezette, G. Feyder, and J. Vanderschueren, “Thermally stimulated current study of space charge formation and contact effects in metal–polyethylene terephthalate film–metal systems,” J. Phys. Chem. Solids 57, 1567 (1996).
[CrossRef]

J. A. Giacometti, A. S. De Reggi, G. T. Davis, and B. Dickens, “Thermal pulse study of the electric polarization in a copolymer of vinylidene cyanide and vinyl acetate,” J. Appl. Phys. 80, 6407 (1996).
[CrossRef]

D. Vuillaume, C. Boulas, J. Collet, J. V. Davidovits, and F. Rondelez, “Organic insulating films of nanometer thicknesses,” Appl. Phys. Lett. 69, 1646 (1996).
[CrossRef]

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys. 104, 6834 (1996).
[CrossRef]

1995

F. Garten, A. R. Schlatmann, R. E. Gill, J. Vrijmoeth, T. M. Klapwijk, and G. Hadziioannou, “Light emission in reverse bias operation from poly(3-octylthiophene)-based light emitting diodes,” Appl. Phys. Lett. 66, 2540 (1995).
[CrossRef]

V. P. Rao, Y. M. Cai, and A. K.-Y. Jen, “New developments in thermally stable second order nonlinear optical chromophores and electro-optic polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Möhlmann, ed., Proc. SPIE 2527, 84 (1995).
[CrossRef]

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
[CrossRef]

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
[CrossRef]

T. A. Pasmore, J. D. Harper, J. Talbot, and H. S. Lackritz, “Monte Carlo simulations of charge transport through doped polymer thin films for second order nonlinear optics,” Nonlinear Opt. 10, 295 (1995).

1994

I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. 75, 1656 (1994).
[CrossRef]

M. Homann and H. Kliem, “Relaxational polarization and charge injection in thin films of silicon nitride,” Microelectron. J. 25, 559 (1994).
[CrossRef]

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

W. Ren, S. Bauer, S. Yilmaz, W. Wirges, and R. Gerhard-Multhaupt, “Optimized poling of nonlinear optical polymers based on dipole-orientation and dipole-relaxation studies,” J. Appl. Phys. 75, 7211 (1994).
[CrossRef]

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267 (1994).
[CrossRef]

A. Otomo, G. I. Stegeman, W. H. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389 (1994).
[CrossRef]

R. A. Hill, A. Knoesen, and M. A. Mortazavi, “Corona poling of nonlinear polymer thin films for electro-optic modulators,” Appl. Phys. Lett. 65, 1733 (1994).
[CrossRef]

A. J. Heeger, I. D. Parker, and Y. Yang, “Carrier injection into semiconducting polymers: Fowler–Nordheim field-emission tunneling,” Synth. Met. 67, 23 (1994).
[CrossRef]

K. Pakbaz, C. H. Lee, A. J. Heeger, T. W. Hagler, and D. McBranch, “Nature of the primary photoexcitations in poly(arylene-vinylenes),” Synth. Met. 64, 295 (1994).
[CrossRef]

M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, and H. Bässler, “Disorder in charge transport in doped polymers,” Adv. Mater. 6, 199 (1994).
[CrossRef]

F. Flores and R. Miranda, “Tuning Schottky barriers by atomic layer control at metal–semiconductor interfaces,” Adv. Mater. 6, 540 (1994).
[CrossRef]

1993

H. Bässler, “Charge transport in disordered organic photoconductors,” Phys. Status Solidi B 175, 15 (1993).
[CrossRef]

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volsen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471 (1993).
[CrossRef]

D. Morichère, P.-A. Chollet, W. Fleming, M. Jurich, B. A. Smith, and J. D. Swalen, “Electro-optic effects in two tolane side-chain nonlinear-optical polymers: comparison between measured coefficients and second-harmonic generation,” J. Opt. Soc. Am. B 10, 1894 (1993).
[CrossRef]

1992

H. Bässler, M. Gailberger, R. F. Mahrt, J. M. Oberski, and G. Weiser, “Exciton versus band description of the absorption, luminescence and electroabsorption of poly(phenylphenylenevinylene) and poly(dodecylthiophene),” Synth. Met. 49–50, 341 (1992).
[CrossRef]

1991

S. Herminghaus, B. A. Smith, and J. D. Swalen, “Electro-optic coefficients in electric-field-poled polymer waveguides,” J. Opt. Soc. Am. B 8, 2311 (1991).
[CrossRef]

S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949 (1991).
[CrossRef]

S. Yee, R. A. Oriani, and M. Stratmann, “Application of a Kelvin microprobe to the corrosion of metals in humid atmopheres,” J. Electrochem. Soc. 138, 55 (1991).
[CrossRef]

1990

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037 (1990).
[CrossRef]

1989

1987

1986

G. M. Sessler, B. Hahn, and D. Yoon, “Electrical conduction in polyimide films,” J. Appl. Phys. 60, 318 (1986).
[CrossRef]

1984

T. J. Lewis, “The role of electrodes in conduction and breakdown phenomena in solid dielectrics,” IEEE Trans. Electr. Insul. 19, 210 (1984).
[CrossRef]

M. Ieda, “Electrical conduction and carrier traps in polymeric materials,” IEEE Trans. Electr. Insul. 19, 162 (1984).
[CrossRef]

1981

D. K. Davies, “Field stimulated interfacial electron transfer,” Proc. Inst. Electr. Eng. 128, 153 (1981).

1978

J. Vanderschueren and A. Linkens, “Nature of transient currents in polymers,” J. Appl. Phys. 49, 4195 (1978).
[CrossRef]

1977

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062 (1977).
[CrossRef]

H. J. Wintle, “Schottky injection currents in insulators: the effect of space charge on the time dependence,” IEEE Trans. Electr. Insul. 12, 424 (1977).
[CrossRef]

F. W. Schmidlin, “Theory of trap-controlled photoconduction,” Phys. Rev. B 16, 2362 (1977).
[CrossRef]

O. L. Curtis, Jr., and J. R. Srour, “The multiple-trapping model and hole transport in SiO2,” J. Appl. Phys. 48, 3819 (1977).
[CrossRef]

1972

J. Antula, “Hot-electron concept for Poole–Frenkel conduction in amorphous dielectric solids,” J. Appl. Phys. 43, 4663 (1972).
[CrossRef]

1971

P. N. Murgatroyd, “Saturation of reservoir contacts,” Phys. Status Solidi A 6, 217 (1971).
[CrossRef]

R. M. Hill, “Poole–Frenkel-conduction in amorphous solids,” Philos. Mag. 23, 59 (1971).
[CrossRef]

N. F. Mott, “Conduction in non-crystalline systems. VII. Non-ohmic behaviour and switching,” Philos. Mag. 24, 911 (1971).
[CrossRef]

1969

N. F. Mott, “Conduction in non-crystalline systems. III. Localized states in a pseudogap and near extremities of conduction and valence bands,” Philos. Mag. 19, 835 (1969).
[CrossRef]

1968

N. F. Mott, “Conduction in non-crystalline systems. I. Localized electronic states in disordered systems,” Philos. Mag. 17, 1259 (1968).
[CrossRef]

A. C. Lilly, Jr., and J. R. McDowell, “High-field conduction in films of Mylar and Teflon,” J. Appl. Phys. 39, 141 (1968).
[CrossRef]

M. E. Baird, “Determination of dielectric behavior at low frequencies from measurements of anomalous charging and discharging currents,” Rev. Mod. Phys. 40, 219 (1968).
[CrossRef]

1967

R. B. Schilling and H. Schachter, “Neglecting diffusion in space-charge-limited currents,” J. Appl. Phys. 38, 841 (1967).
[CrossRef]

1966

J. M. Andrews and M. P. Lepselter, “Reverse current-voltage characteristics of metal-silicide Schottky diodes,” Solid-State Electron. 12, 695 (1966).

G. Lengyel, “Schottky emission and conduction in some organic insulating materials,” J. Appl. Phys. 37, 807 (1966).
[CrossRef]

1965

A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal–semiconductor systems,” J. Appl. Phys. 36, 3212 (1965).
[CrossRef]

J. Lindmayer, “Current transient in insulators,” J. Appl. Phys. 36, 196 (1965).
[CrossRef]

1963

J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581 (1963).
[CrossRef]

1950

J. Bardeen and W. Shockley, “Deformation potentials and mobilities in nonpolar crystals,” Phys. Rev. 80, 72 (1950).
[CrossRef]

E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors,” Phys. Rev. 77, 388 (1950).
[CrossRef]

1947

J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev. 71, 717 (1947).
[CrossRef]

1942

W. Schottky, “Vereinfachte und erweiterte Theorie der Randschichtgleichrichter,” Z. Phys. 118, 539 (1942).
[CrossRef]

1938

J. Frenkel, “On pre-breakdown phenomena in insulators and electronic semiconductors,” Phys. Rev. 54, 647 (1938).
[CrossRef]

1929

L. Nordheim, “Die Theorie der Elektronenemission der Metalle,” Phys. Z. 30, 177 (1929).

1923

W. Schottky, “Über kalte und warme Elektronenentladungen,” Z. Phys. 14, 63 (1923).
[CrossRef]

Ahlheim, M.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Andrews, J. M.

J. M. Andrews and M. P. Lepselter, “Reverse current-voltage characteristics of metal-silicide Schottky diodes,” Solid-State Electron. 12, 695 (1966).

Antula, J.

J. Antula, “Hot-electron concept for Poole–Frenkel conduction in amorphous dielectric solids,” J. Appl. Phys. 43, 4663 (1972).
[CrossRef]

Baird, M. E.

M. E. Baird, “Determination of dielectric behavior at low frequencies from measurements of anomalous charging and discharging currents,” Rev. Mod. Phys. 40, 219 (1968).
[CrossRef]

Bardeen, J.

J. Bardeen and W. Shockley, “Deformation potentials and mobilities in nonpolar crystals,” Phys. Rev. 80, 72 (1950).
[CrossRef]

J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev. 71, 717 (1947).
[CrossRef]

Barzoukas, M.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Bässler, H.

M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, and H. Bässler, “Disorder in charge transport in doped polymers,” Adv. Mater. 6, 199 (1994).
[CrossRef]

H. Bässler, “Charge transport in disordered organic photoconductors,” Phys. Status Solidi B 175, 15 (1993).
[CrossRef]

H. Bässler, M. Gailberger, R. F. Mahrt, J. M. Oberski, and G. Weiser, “Exciton versus band description of the absorption, luminescence and electroabsorption of poly(phenylphenylenevinylene) and poly(dodecylthiophene),” Synth. Met. 49–50, 341 (1992).
[CrossRef]

Bauer, S.

W. Ren, S. Bauer, S. Yilmaz, W. Wirges, and R. Gerhard-Multhaupt, “Optimized poling of nonlinear optical polymers based on dipole-orientation and dipole-relaxation studies,” J. Appl. Phys. 75, 7211 (1994).
[CrossRef]

Bedworth, P. V.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Berkovic, G.

S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949 (1991).
[CrossRef]

Béroual, A.

Ch. Joubert, A. Béroual, and G. Rojat, “Electric field and equivalent circuit in all-film capacitors,” J. Appl. Phys. 81, 6579 (1997).
[CrossRef]

Bethke, S. J.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037 (1990).
[CrossRef]

Blanchard-Desce, M.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Borsenberger, P. M.

M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, and H. Bässler, “Disorder in charge transport in doped polymers,” Adv. Mater. 6, 199 (1994).
[CrossRef]

Boulas, C.

D. Vuillaume, C. Boulas, J. Collet, J. V. Davidovits, and F. Rondelez, “Organic insulating films of nanometer thicknesses,” Appl. Phys. Lett. 69, 1646 (1996).
[CrossRef]

Burland, D. M.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volsen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471 (1993).
[CrossRef]

Cai, Y. M.

V. P. Rao, Y. M. Cai, and A. K.-Y. Jen, “New developments in thermally stable second order nonlinear optical chromophores and electro-optic polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Möhlmann, ed., Proc. SPIE 2527, 84 (1995).
[CrossRef]

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
[CrossRef]

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
[CrossRef]

Chollet, P.-A.

Chow, P. D.

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
[CrossRef]

Collet, J.

D. Vuillaume, C. Boulas, J. Collet, J. V. Davidovits, and F. Rondelez, “Organic insulating films of nanometer thicknesses,” Appl. Phys. Lett. 69, 1646 (1996).
[CrossRef]

Conwell, E.

E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors,” Phys. Rev. 77, 388 (1950).
[CrossRef]

Cowley, A. M.

A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal–semiconductor systems,” J. Appl. Phys. 36, 3212 (1965).
[CrossRef]

Curtis Jr., O. L.

O. L. Curtis, Jr., and J. R. Srour, “The multiple-trapping model and hole transport in SiO2,” J. Appl. Phys. 48, 3819 (1977).
[CrossRef]

Dalton, L. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
[CrossRef]

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
[CrossRef]

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
[CrossRef]

Davidovits, J. V.

D. Vuillaume, C. Boulas, J. Collet, J. V. Davidovits, and F. Rondelez, “Organic insulating films of nanometer thicknesses,” Appl. Phys. Lett. 69, 1646 (1996).
[CrossRef]

Davies, D. K.

D. K. Davies, “Field stimulated interfacial electron transfer,” Proc. Inst. Electr. Eng. 128, 153 (1981).

Davis, G. T.

J. A. Giacometti, A. S. De Reggi, G. T. Davis, and B. Dickens, “Thermal pulse study of the electric polarization in a copolymer of vinylidene cyanide and vinyl acetate,” J. Appl. Phys. 80, 6407 (1996).
[CrossRef]

De Reggi, A. S.

J. A. Giacometti, A. S. De Reggi, G. T. Davis, and B. Dickens, “Thermal pulse study of the electric polarization in a copolymer of vinylidene cyanide and vinyl acetate,” J. Appl. Phys. 80, 6407 (1996).
[CrossRef]

De Schryver, F. C.

M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, and H. Bässler, “Disorder in charge transport in doped polymers,” Adv. Mater. 6, 199 (1994).
[CrossRef]

Dickens, B.

J. A. Giacometti, A. S. De Reggi, G. T. Davis, and B. Dickens, “Thermal pulse study of the electric polarization in a copolymer of vinylidene cyanide and vinyl acetate,” J. Appl. Phys. 80, 6407 (1996).
[CrossRef]

Dienes, A.

Dirk, C. W.

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267 (1994).
[CrossRef]

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
[CrossRef]

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
[CrossRef]

Feyder, G.

A. Thielen, J. Niezette, G. Feyder, and J. Vanderschueren, “Thermally stimulated current study of space charge formation and contact effects in metal–polyethylene terephthalate film–metal systems,” J. Phys. Chem. Solids 57, 1567 (1996).
[CrossRef]

Fleming, W.

Flores, F.

F. Flores and R. Miranda, “Tuning Schottky barriers by atomic layer control at metal–semiconductor interfaces,” Adv. Mater. 6, 540 (1994).
[CrossRef]

Fort, A.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Frenkel, J.

J. Frenkel, “On pre-breakdown phenomena in insulators and electronic semiconductors,” Phys. Rev. 54, 647 (1938).
[CrossRef]

Gailberger, M.

H. Bässler, M. Gailberger, R. F. Mahrt, J. M. Oberski, and G. Weiser, “Exciton versus band description of the absorption, luminescence and electroabsorption of poly(phenylphenylenevinylene) and poly(dodecylthiophene),” Synth. Met. 49–50, 341 (1992).
[CrossRef]

Garten, F.

F. Garten, A. R. Schlatmann, R. E. Gill, J. Vrijmoeth, T. M. Klapwijk, and G. Hadziioannou, “Light emission in reverse bias operation from poly(3-octylthiophene)-based light emitting diodes,” Appl. Phys. Lett. 66, 2540 (1995).
[CrossRef]

Gerhard-Multhaupt, R.

W. Ren, S. Bauer, S. Yilmaz, W. Wirges, and R. Gerhard-Multhaupt, “Optimized poling of nonlinear optical polymers based on dipole-orientation and dipole-relaxation studies,” J. Appl. Phys. 75, 7211 (1994).
[CrossRef]

Ghebremichael, F.

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267 (1994).
[CrossRef]

Ghosn, R.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
[CrossRef]

Giacometti, J. A.

J. A. Giacometti, A. S. De Reggi, G. T. Davis, and B. Dickens, “Thermal pulse study of the electric polarization in a copolymer of vinylidene cyanide and vinyl acetate,” J. Appl. Phys. 80, 6407 (1996).
[CrossRef]

Gill, R. E.

F. Garten, A. R. Schlatmann, R. E. Gill, J. Vrijmoeth, T. M. Klapwijk, and G. Hadziioannou, “Light emission in reverse bias operation from poly(3-octylthiophene)-based light emitting diodes,” Appl. Phys. Lett. 66, 2540 (1995).
[CrossRef]

Grubb, S. G.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037 (1990).
[CrossRef]

Guan, H. W.

M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys. 104, 6834 (1996).
[CrossRef]

Hadziioannou, G.

F. Garten, A. R. Schlatmann, R. E. Gill, J. Vrijmoeth, T. M. Klapwijk, and G. Hadziioannou, “Light emission in reverse bias operation from poly(3-octylthiophene)-based light emitting diodes,” Appl. Phys. Lett. 66, 2540 (1995).
[CrossRef]

Hagler, T. W.

K. Pakbaz, C. H. Lee, A. J. Heeger, T. W. Hagler, and D. McBranch, “Nature of the primary photoexcitations in poly(arylene-vinylenes),” Synth. Met. 64, 295 (1994).
[CrossRef]

Hahn, B.

G. M. Sessler, B. Hahn, and D. Yoon, “Electrical conduction in polyimide films,” J. Appl. Phys. 60, 318 (1986).
[CrossRef]

Hampsch, H. L.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037 (1990).
[CrossRef]

Harper, A. W.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
[CrossRef]

Harper, J. D.

T. A. Pasmore, J. D. Harper, J. Talbot, and H. S. Lackritz, “Monte Carlo simulations of charge transport through doped polymer thin films for second order nonlinear optics,” Nonlinear Opt. 10, 295 (1995).

Heeger, A. J.

K. Pakbaz, C. H. Lee, A. J. Heeger, T. W. Hagler, and D. McBranch, “Nature of the primary photoexcitations in poly(arylene-vinylenes),” Synth. Met. 64, 295 (1994).
[CrossRef]

A. J. Heeger, I. D. Parker, and Y. Yang, “Carrier injection into semiconducting polymers: Fowler–Nordheim field-emission tunneling,” Synth. Met. 67, 23 (1994).
[CrossRef]

Herminghaus, S.

Higgins, B. G.

Hill, R. A.

R. A. Hill, A. Knoesen, and M. A. Mortazavi, “Corona poling of nonlinear polymer thin films for electro-optic modulators,” Appl. Phys. Lett. 65, 1733 (1994).
[CrossRef]

Hill, R. M.

R. M. Hill, “Poole–Frenkel-conduction in amorphous solids,” Philos. Mag. 23, 59 (1971).
[CrossRef]

Homann, M.

M. Homann and H. Kliem, “Relaxational polarization and charge injection in thin films of silicon nitride,” Microelectron. J. 25, 559 (1994).
[CrossRef]

Horsthuis, W. H.

A. Otomo, G. I. Stegeman, W. H. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389 (1994).
[CrossRef]

Hu, Z.-Y.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Hubbel, A.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
[CrossRef]

Ieda, M.

M. Ieda, “Electrical conduction and carrier traps in polymeric materials,” IEEE Trans. Electr. Insul. 19, 162 (1984).
[CrossRef]

Jen, A. K.-Y.

V. P. Rao, Y. M. Cai, and A. K.-Y. Jen, “New developments in thermally stable second order nonlinear optical chromophores and electro-optic polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Möhlmann, ed., Proc. SPIE 2527, 84 (1995).
[CrossRef]

Joubert, Ch.

Ch. Joubert, A. Béroual, and G. Rojat, “Electric field and equivalent circuit in all-film capacitors,” J. Appl. Phys. 81, 6579 (1997).
[CrossRef]

Jurich, M.

Klapwijk, T. M.

F. Garten, A. R. Schlatmann, R. E. Gill, J. Vrijmoeth, T. M. Klapwijk, and G. Hadziioannou, “Light emission in reverse bias operation from poly(3-octylthiophene)-based light emitting diodes,” Appl. Phys. Lett. 66, 2540 (1995).
[CrossRef]

Kliem, H.

M. Homann and H. Kliem, “Relaxational polarization and charge injection in thin films of silicon nitride,” Microelectron. J. 25, 559 (1994).
[CrossRef]

Knoesen, A.

Kowel, S. T.

Krongauz, V.

S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949 (1991).
[CrossRef]

Kuzyk, M. G.

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267 (1994).
[CrossRef]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
[CrossRef]

Lackritz, H. S.

T. A. Pasmore, J. D. Harper, J. Talbot, and H. S. Lackritz, “Monte Carlo simulations of charge transport through doped polymer thin films for second order nonlinear optics,” Nonlinear Opt. 10, 295 (1995).

Laquindanum, J.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
[CrossRef]

Lee, C. H.

K. Pakbaz, C. H. Lee, A. J. Heeger, T. W. Hagler, and D. McBranch, “Nature of the primary photoexcitations in poly(arylene-vinylenes),” Synth. Met. 64, 295 (1994).
[CrossRef]

Lengyel, G.

G. Lengyel, “Schottky emission and conduction in some organic insulating materials,” J. Appl. Phys. 37, 807 (1966).
[CrossRef]

Lepselter, M. P.

J. M. Andrews and M. P. Lepselter, “Reverse current-voltage characteristics of metal-silicide Schottky diodes,” Solid-State Electron. 12, 695 (1966).

Lewis, T. J.

T. J. Lewis, “The role of electrodes in conduction and breakdown phenomena in solid dielectrics,” IEEE Trans. Electr. Insul. 19, 210 (1984).
[CrossRef]

Liang, Z.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
[CrossRef]

Lilly Jr., A. C.

A. C. Lilly, Jr., and J. R. McDowell, “High-field conduction in films of Mylar and Teflon,” J. Appl. Phys. 39, 141 (1968).
[CrossRef]

Lindmayer, J.

J. Lindmayer, “Current transient in insulators,” J. Appl. Phys. 36, 196 (1965).
[CrossRef]

Linkens, A.

J. Vanderschueren and A. Linkens, “Nature of transient currents in polymers,” J. Appl. Phys. 49, 4195 (1978).
[CrossRef]

Mahrt, R. F.

H. Bässler, M. Gailberger, R. F. Mahrt, J. M. Oberski, and G. Weiser, “Exciton versus band description of the absorption, luminescence and electroabsorption of poly(phenylphenylenevinylene) and poly(dodecylthiophene),” Synth. Met. 49–50, 341 (1992).
[CrossRef]

Marder, S. R.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

McBranch, D.

K. Pakbaz, C. H. Lee, A. J. Heeger, T. W. Hagler, and D. McBranch, “Nature of the primary photoexcitations in poly(arylene-vinylenes),” Synth. Met. 64, 295 (1994).
[CrossRef]

McDowell, J. R.

A. C. Lilly, Jr., and J. R. McDowell, “High-field conduction in films of Mylar and Teflon,” J. Appl. Phys. 39, 141 (1968).
[CrossRef]

Miller, R. D.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volsen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471 (1993).
[CrossRef]

Miranda, R.

F. Flores and R. Miranda, “Tuning Schottky barriers by atomic layer control at metal–semiconductor interfaces,” Adv. Mater. 6, 540 (1994).
[CrossRef]

Möhlmann, G. R.

A. Otomo, G. I. Stegeman, W. H. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389 (1994).
[CrossRef]

Morichère, D.

Mortazavi, M. A.

Mott, N. F.

N. F. Mott, “Conduction in non-crystalline systems. VII. Non-ohmic behaviour and switching,” Philos. Mag. 24, 911 (1971).
[CrossRef]

N. F. Mott, “Conduction in non-crystalline systems. III. Localized states in a pseudogap and near extremities of conduction and valence bands,” Philos. Mag. 19, 835 (1969).
[CrossRef]

N. F. Mott, “Conduction in non-crystalline systems. I. Localized electronic states in disordered systems,” Philos. Mag. 17, 1259 (1968).
[CrossRef]

Murgatroyd, P. N.

P. N. Murgatroyd, “Saturation of reservoir contacts,” Phys. Status Solidi A 6, 217 (1971).
[CrossRef]

Niezette, J.

A. Thielen, J. Niezette, G. Feyder, and J. Vanderschueren, “Thermally stimulated current study of space charge formation and contact effects in metal–polyethylene terephthalate film–metal systems,” J. Phys. Chem. Solids 57, 1567 (1996).
[CrossRef]

Nordheim, L.

L. Nordheim, “Die Theorie der Elektronenemission der Metalle,” Phys. Z. 30, 177 (1929).

Oberski, J. M.

H. Bässler, M. Gailberger, R. F. Mahrt, J. M. Oberski, and G. Weiser, “Exciton versus band description of the absorption, luminescence and electroabsorption of poly(phenylphenylenevinylene) and poly(dodecylthiophene),” Synth. Met. 49–50, 341 (1992).
[CrossRef]

Oriani, R. A.

S. Yee, R. A. Oriani, and M. Stratmann, “Application of a Kelvin microprobe to the corrosion of metals in humid atmopheres,” J. Electrochem. Soc. 138, 55 (1991).
[CrossRef]

Otomo, A.

A. Otomo, G. I. Stegeman, W. H. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389 (1994).
[CrossRef]

Pakbaz, K.

K. Pakbaz, C. H. Lee, A. J. Heeger, T. W. Hagler, and D. McBranch, “Nature of the primary photoexcitations in poly(arylene-vinylenes),” Synth. Met. 64, 295 (1994).
[CrossRef]

Parker, I. D.

A. J. Heeger, I. D. Parker, and Y. Yang, “Carrier injection into semiconducting polymers: Fowler–Nordheim field-emission tunneling,” Synth. Met. 67, 23 (1994).
[CrossRef]

I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. 75, 1656 (1994).
[CrossRef]

Pasmore, T. A.

T. A. Pasmore, J. D. Harper, J. Talbot, and H. S. Lackritz, “Monte Carlo simulations of charge transport through doped polymer thin films for second order nonlinear optics,” Nonlinear Opt. 10, 295 (1995).

Pauley, M. A.

M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys. 104, 6834 (1996).
[CrossRef]

Perry, J. W.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Pfister, G.

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062 (1977).
[CrossRef]

Rao, V. P.

V. P. Rao, Y. M. Cai, and A. K.-Y. Jen, “New developments in thermally stable second order nonlinear optical chromophores and electro-optic polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Möhlmann, ed., Proc. SPIE 2527, 84 (1995).
[CrossRef]

Ren, W.

W. Ren, S. Bauer, S. Yilmaz, W. Wirges, and R. Gerhard-Multhaupt, “Optimized poling of nonlinear optical polymers based on dipole-orientation and dipole-relaxation studies,” J. Appl. Phys. 75, 7211 (1994).
[CrossRef]

Rojat, G.

Ch. Joubert, A. Béroual, and G. Rojat, “Electric field and equivalent circuit in all-film capacitors,” J. Appl. Phys. 81, 6579 (1997).
[CrossRef]

Rondelez, F.

D. Vuillaume, C. Boulas, J. Collet, J. V. Davidovits, and F. Rondelez, “Organic insulating films of nanometer thicknesses,” Appl. Phys. Lett. 69, 1646 (1996).
[CrossRef]

Runser, C.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Schachter, H.

R. B. Schilling and H. Schachter, “Neglecting diffusion in space-charge-limited currents,” J. Appl. Phys. 38, 841 (1967).
[CrossRef]

Scher, H.

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062 (1977).
[CrossRef]

Schilling, R. B.

R. B. Schilling and H. Schachter, “Neglecting diffusion in space-charge-limited currents,” J. Appl. Phys. 38, 841 (1967).
[CrossRef]

Schlatmann, A. R.

F. Garten, A. R. Schlatmann, R. E. Gill, J. Vrijmoeth, T. M. Klapwijk, and G. Hadziioannou, “Light emission in reverse bias operation from poly(3-octylthiophene)-based light emitting diodes,” Appl. Phys. Lett. 66, 2540 (1995).
[CrossRef]

Schmidlin, F. W.

F. W. Schmidlin, “Theory of trap-controlled photoconduction,” Phys. Rev. B 16, 2362 (1977).
[CrossRef]

Schottky, W.

W. Schottky, “Vereinfachte und erweiterte Theorie der Randschichtgleichrichter,” Z. Phys. 118, 539 (1942).
[CrossRef]

W. Schottky, “Über kalte und warme Elektronenentladungen,” Z. Phys. 14, 63 (1923).
[CrossRef]

Sessler, G. M.

G. M. Sessler, B. Hahn, and D. Yoon, “Electrical conduction in polyimide films,” J. Appl. Phys. 60, 318 (1986).
[CrossRef]

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
[CrossRef]

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
[CrossRef]

Shockley, W.

J. Bardeen and W. Shockley, “Deformation potentials and mobilities in nonpolar crystals,” Phys. Rev. 80, 72 (1950).
[CrossRef]

Simmons, J. G.

J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581 (1963).
[CrossRef]

Singer, K. D.

Smith, B. A.

Sohn, J. E.

Srour, J. R.

O. L. Curtis, Jr., and J. R. Srour, “The multiple-trapping model and hole transport in SiO2,” J. Appl. Phys. 48, 3819 (1977).
[CrossRef]

Staehelin, M.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Stähelin, M.

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volsen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471 (1993).
[CrossRef]

Stegeman, G. I.

A. Otomo, G. I. Stegeman, W. H. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389 (1994).
[CrossRef]

Steier, W. H.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
[CrossRef]

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
[CrossRef]

Stratmann, M.

S. Yee, R. A. Oriani, and M. Stratmann, “Application of a Kelvin microprobe to the corrosion of metals in humid atmopheres,” J. Electrochem. Soc. 138, 55 (1991).
[CrossRef]

Swalen, J. D.

Sze, S. M.

A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal–semiconductor systems,” J. Appl. Phys. 36, 3212 (1965).
[CrossRef]

Talbot, J.

T. A. Pasmore, J. D. Harper, J. Talbot, and H. S. Lackritz, “Monte Carlo simulations of charge transport through doped polymer thin films for second order nonlinear optics,” Nonlinear Opt. 10, 295 (1995).

Thielen, A.

A. Thielen, J. Niezette, G. Feyder, and J. Vanderschueren, “Thermally stimulated current study of space charge formation and contact effects in metal–polyethylene terephthalate film–metal systems,” J. Phys. Chem. Solids 57, 1567 (1996).
[CrossRef]

Torkelson, J. M.

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037 (1990).
[CrossRef]

Twieg, R. J.

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volsen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471 (1993).
[CrossRef]

Van der Auweraer, M.

M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, and H. Bässler, “Disorder in charge transport in doped polymers,” Adv. Mater. 6, 199 (1994).
[CrossRef]

Vanderschueren, J.

A. Thielen, J. Niezette, G. Feyder, and J. Vanderschueren, “Thermally stimulated current study of space charge formation and contact effects in metal–polyethylene terephthalate film–metal systems,” J. Phys. Chem. Solids 57, 1567 (1996).
[CrossRef]

J. Vanderschueren and A. Linkens, “Nature of transient currents in polymers,” J. Appl. Phys. 49, 4195 (1978).
[CrossRef]

Volsen, W.

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volsen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471 (1993).
[CrossRef]

Vrijmoeth, J.

F. Garten, A. R. Schlatmann, R. E. Gill, J. Vrijmoeth, T. M. Klapwijk, and G. Hadziioannou, “Light emission in reverse bias operation from poly(3-octylthiophene)-based light emitting diodes,” Appl. Phys. Lett. 66, 2540 (1995).
[CrossRef]

Vuillaume, D.

D. Vuillaume, C. Boulas, J. Collet, J. V. Davidovits, and F. Rondelez, “Organic insulating films of nanometer thicknesses,” Appl. Phys. Lett. 69, 1646 (1996).
[CrossRef]

Walsh, C. A.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volsen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471 (1993).
[CrossRef]

Wang, C. H.

M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys. 104, 6834 (1996).
[CrossRef]

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
[CrossRef]

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
[CrossRef]

Weiser, G.

H. Bässler, M. Gailberger, R. F. Mahrt, J. M. Oberski, and G. Weiser, “Exciton versus band description of the absorption, luminescence and electroabsorption of poly(phenylphenylenevinylene) and poly(dodecylthiophene),” Synth. Met. 49–50, 341 (1992).
[CrossRef]

Weisskopf, V. F.

E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors,” Phys. Rev. 77, 388 (1950).
[CrossRef]

Wintle, H. J.

H. J. Wintle, “Schottky injection currents in insulators: the effect of space charge on the time dependence,” IEEE Trans. Electr. Insul. 12, 424 (1977).
[CrossRef]

Wirges, W.

W. Ren, S. Bauer, S. Yilmaz, W. Wirges, and R. Gerhard-Multhaupt, “Optimized poling of nonlinear optical polymers based on dipole-orientation and dipole-relaxation studies,” J. Appl. Phys. 75, 7211 (1994).
[CrossRef]

Wu, B.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
[CrossRef]

Xu, C.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
[CrossRef]

Yang, Y.

A. J. Heeger, I. D. Parker, and Y. Yang, “Carrier injection into semiconducting polymers: Fowler–Nordheim field-emission tunneling,” Synth. Met. 67, 23 (1994).
[CrossRef]

Yee, S.

S. Yee, R. A. Oriani, and M. Stratmann, “Application of a Kelvin microprobe to the corrosion of metals in humid atmopheres,” J. Electrochem. Soc. 138, 55 (1991).
[CrossRef]

Yilmaz, S.

W. Ren, S. Bauer, S. Yilmaz, W. Wirges, and R. Gerhard-Multhaupt, “Optimized poling of nonlinear optical polymers based on dipole-orientation and dipole-relaxation studies,” J. Appl. Phys. 75, 7211 (1994).
[CrossRef]

Yitzchaik, S.

S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949 (1991).
[CrossRef]

Yoon, D.

G. M. Sessler, B. Hahn, and D. Yoon, “Electrical conduction in polyimide films,” J. Appl. Phys. 60, 318 (1986).
[CrossRef]

Zimmerman, K.

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267 (1994).
[CrossRef]

Zysset, B.

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Adv. Mater.

L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7, 519 (1995).
[CrossRef]

M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, and H. Bässler, “Disorder in charge transport in doped polymers,” Adv. Mater. 6, 199 (1994).
[CrossRef]

F. Flores and R. Miranda, “Tuning Schottky barriers by atomic layer control at metal–semiconductor interfaces,” Adv. Mater. 6, 540 (1994).
[CrossRef]

Appl. Phys. Lett.

W. Wang, D. Chen, H. R. Fetterman, Y. Shi, W. H. Steier, L. R. Dalton, and P. D. Chow, “Optical heterodyne detection of 60-GHz electro-optic modulation from polymer waveguide modulators,” Appl. Phys. Lett. 67, 1806 (1995).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335 (1997).
[CrossRef]

R. A. Hill, A. Knoesen, and M. A. Mortazavi, “Corona poling of nonlinear polymer thin films for electro-optic modulators,” Appl. Phys. Lett. 65, 1733 (1994).
[CrossRef]

A. Otomo, G. I. Stegeman, W. H. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389 (1994).
[CrossRef]

F. Garten, A. R. Schlatmann, R. E. Gill, J. Vrijmoeth, T. M. Klapwijk, and G. Hadziioannou, “Light emission in reverse bias operation from poly(3-octylthiophene)-based light emitting diodes,” Appl. Phys. Lett. 66, 2540 (1995).
[CrossRef]

D. Vuillaume, C. Boulas, J. Collet, J. V. Davidovits, and F. Rondelez, “Organic insulating films of nanometer thicknesses,” Appl. Phys. Lett. 69, 1646 (1996).
[CrossRef]

Chem. Rev.

D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31 (1994).
[CrossRef]

IEEE Trans. Electr. Insul.

M. Ieda, “Electrical conduction and carrier traps in polymeric materials,” IEEE Trans. Electr. Insul. 19, 162 (1984).
[CrossRef]

T. J. Lewis, “The role of electrodes in conduction and breakdown phenomena in solid dielectrics,” IEEE Trans. Electr. Insul. 19, 210 (1984).
[CrossRef]

H. J. Wintle, “Schottky injection currents in insulators: the effect of space charge on the time dependence,” IEEE Trans. Electr. Insul. 12, 424 (1977).
[CrossRef]

J. Appl. Phys.

G. M. Sessler, B. Hahn, and D. Yoon, “Electrical conduction in polyimide films,” J. Appl. Phys. 60, 318 (1986).
[CrossRef]

G. Lengyel, “Schottky emission and conduction in some organic insulating materials,” J. Appl. Phys. 37, 807 (1966).
[CrossRef]

J. Vanderschueren and A. Linkens, “Nature of transient currents in polymers,” J. Appl. Phys. 49, 4195 (1978).
[CrossRef]

J. Antula, “Hot-electron concept for Poole–Frenkel conduction in amorphous dielectric solids,” J. Appl. Phys. 43, 4663 (1972).
[CrossRef]

A. C. Lilly, Jr., and J. R. McDowell, “High-field conduction in films of Mylar and Teflon,” J. Appl. Phys. 39, 141 (1968).
[CrossRef]

A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal–semiconductor systems,” J. Appl. Phys. 36, 3212 (1965).
[CrossRef]

R. B. Schilling and H. Schachter, “Neglecting diffusion in space-charge-limited currents,” J. Appl. Phys. 38, 841 (1967).
[CrossRef]

I. D. Parker, “Carrier tunneling and device characteristics in polymer light-emitting diodes,” J. Appl. Phys. 75, 1656 (1994).
[CrossRef]

J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581 (1963).
[CrossRef]

J. A. Giacometti, A. S. De Reggi, G. T. Davis, and B. Dickens, “Thermal pulse study of the electric polarization in a copolymer of vinylidene cyanide and vinyl acetate,” J. Appl. Phys. 80, 6407 (1996).
[CrossRef]

Ch. Joubert, A. Béroual, and G. Rojat, “Electric field and equivalent circuit in all-film capacitors,” J. Appl. Phys. 81, 6579 (1997).
[CrossRef]

O. L. Curtis, Jr., and J. R. Srour, “The multiple-trapping model and hole transport in SiO2,” J. Appl. Phys. 48, 3819 (1977).
[CrossRef]

J. Lindmayer, “Current transient in insulators,” J. Appl. Phys. 36, 196 (1965).
[CrossRef]

H. L. Hampsch, J. M. Torkelson, S. J. Bethke, and S. G. Grubb, “Second harmonic generation in corona poled, doped polymer films as a function of corona processing,” J. Appl. Phys. 67, 1037 (1990).
[CrossRef]

S. Yitzchaik, G. Berkovic, and V. Krongauz, “Charge injection asymmetry: a new route to strong optical nonlinearity in poled polymers,” J. Appl. Phys. 70, 3949 (1991).
[CrossRef]

M. Stähelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volsen, “Orientational decay in poled second-order nonlinear optical guest–host polymers: temperature dependence and effects of poling geometry,” J. Appl. Phys. 73, 8471 (1993).
[CrossRef]

W. Ren, S. Bauer, S. Yilmaz, W. Wirges, and R. Gerhard-Multhaupt, “Optimized poling of nonlinear optical polymers based on dipole-orientation and dipole-relaxation studies,” J. Appl. Phys. 75, 7211 (1994).
[CrossRef]

K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest–host polymers,” J. Appl. Phys. 75, 1267 (1994).
[CrossRef]

J. Chem. Phys.

M. A. Pauley, H. W. Guan, and C. H. Wang, “Poling dynamics and investigation into behavior of trapped charge in poled polymer films for nonlinear optical applications,” J. Chem. Phys. 104, 6834 (1996).
[CrossRef]

J. Electrochem. Soc.

S. Yee, R. A. Oriani, and M. Stratmann, “Application of a Kelvin microprobe to the corrosion of metals in humid atmopheres,” J. Electrochem. Soc. 138, 55 (1991).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

A. Thielen, J. Niezette, G. Feyder, and J. Vanderschueren, “Thermally stimulated current study of space charge formation and contact effects in metal–polyethylene terephthalate film–metal systems,” J. Phys. Chem. Solids 57, 1567 (1996).
[CrossRef]

Microelectron. J.

M. Homann and H. Kliem, “Relaxational polarization and charge injection in thin films of silicon nitride,” Microelectron. J. 25, 559 (1994).
[CrossRef]

Nonlinear Opt.

T. A. Pasmore, J. D. Harper, J. Talbot, and H. S. Lackritz, “Monte Carlo simulations of charge transport through doped polymer thin films for second order nonlinear optics,” Nonlinear Opt. 10, 295 (1995).

Philos. Mag.

R. M. Hill, “Poole–Frenkel-conduction in amorphous solids,” Philos. Mag. 23, 59 (1971).
[CrossRef]

N. F. Mott, “Conduction in non-crystalline systems. VII. Non-ohmic behaviour and switching,” Philos. Mag. 24, 911 (1971).
[CrossRef]

N. F. Mott, “Conduction in non-crystalline systems. I. Localized electronic states in disordered systems,” Philos. Mag. 17, 1259 (1968).
[CrossRef]

N. F. Mott, “Conduction in non-crystalline systems. III. Localized states in a pseudogap and near extremities of conduction and valence bands,” Philos. Mag. 19, 835 (1969).
[CrossRef]

Phys. Rev.

J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev. 71, 717 (1947).
[CrossRef]

J. Bardeen and W. Shockley, “Deformation potentials and mobilities in nonpolar crystals,” Phys. Rev. 80, 72 (1950).
[CrossRef]

E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors,” Phys. Rev. 77, 388 (1950).
[CrossRef]

J. Frenkel, “On pre-breakdown phenomena in insulators and electronic semiconductors,” Phys. Rev. 54, 647 (1938).
[CrossRef]

Phys. Rev. B

G. Pfister and H. Scher, “Time-dependent electrical transport in amorphous solids: As2Se3,” Phys. Rev. B 15, 2062 (1977).
[CrossRef]

F. W. Schmidlin, “Theory of trap-controlled photoconduction,” Phys. Rev. B 16, 2362 (1977).
[CrossRef]

Phys. Status Solidi A

P. N. Murgatroyd, “Saturation of reservoir contacts,” Phys. Status Solidi A 6, 217 (1971).
[CrossRef]

Phys. Status Solidi B

H. Bässler, “Charge transport in disordered organic photoconductors,” Phys. Status Solidi B 175, 15 (1993).
[CrossRef]

Phys. Z.

L. Nordheim, “Die Theorie der Elektronenemission der Metalle,” Phys. Z. 30, 177 (1929).

Proc. Inst. Electr. Eng.

D. K. Davies, “Field stimulated interfacial electron transfer,” Proc. Inst. Electr. Eng. 128, 153 (1981).

Proc. SPIE

V. P. Rao, Y. M. Cai, and A. K.-Y. Jen, “New developments in thermally stable second order nonlinear optical chromophores and electro-optic polymers,” in Nonlinear Optical Properties of Organic Materials VIII, G. R. Möhlmann, ed., Proc. SPIE 2527, 84 (1995).
[CrossRef]

Rev. Mod. Phys.

M. E. Baird, “Determination of dielectric behavior at low frequencies from measurements of anomalous charging and discharging currents,” Rev. Mod. Phys. 40, 219 (1968).
[CrossRef]

Science

M. Ahlheim, M. Barzoukas, P. V. Bedworth, M. Blanchard-Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, “Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient,” Science 271, 335 (1996).
[CrossRef]

Solid-State Electron.

J. M. Andrews and M. P. Lepselter, “Reverse current-voltage characteristics of metal-silicide Schottky diodes,” Solid-State Electron. 12, 695 (1966).

Synth. Met.

A. J. Heeger, I. D. Parker, and Y. Yang, “Carrier injection into semiconducting polymers: Fowler–Nordheim field-emission tunneling,” Synth. Met. 67, 23 (1994).
[CrossRef]

H. Bässler, M. Gailberger, R. F. Mahrt, J. M. Oberski, and G. Weiser, “Exciton versus band description of the absorption, luminescence and electroabsorption of poly(phenylphenylenevinylene) and poly(dodecylthiophene),” Synth. Met. 49–50, 341 (1992).
[CrossRef]

K. Pakbaz, C. H. Lee, A. J. Heeger, T. W. Hagler, and D. McBranch, “Nature of the primary photoexcitations in poly(arylene-vinylenes),” Synth. Met. 64, 295 (1994).
[CrossRef]

Z. Phys.

W. Schottky, “Über kalte und warme Elektronenentladungen,” Z. Phys. 14, 63 (1923).
[CrossRef]

W. Schottky, “Vereinfachte und erweiterte Theorie der Randschichtgleichrichter,” Z. Phys. 118, 539 (1942).
[CrossRef]

Other

J. van Turnhout, “Thermally stimulated discharge of electrets,” in Electrets, G. Sessler, ed. (Springer-Verlag, Heidelberg, 1980), pp. 81–205.

Spin-on glass, Accuglass 512, from Allied Signal Inc., Milpitas, Calif.

Obtained from IBM Almaden Research Center, San Jose, Calif.

D. Schroeder, Modelling of Interface Carrier Transport for Device Simulation, Computational Microelectronics Series (Springer-Verlag, Vienna, 1994).

P. W. Atkins, Physical Chemistry (Oxford U. Press, Oxford, 1990).

A. K. Jonscher and R. M. Hill, “Electrical conduction in disordered nonmetallic films,” in Physics of Thin Films, G. Hass, M. H. Francombe, and R. W. Hoffmann, eds. (Academic, New York, 1975), Vol. 8, pp. 169–249.

G. M. Sessler, “Physical principles of electrets,” in Electrets, G. Sessler, ed. (Springer-Verlag, Heidelberg, 1980), pp. 13–80.

H. K. Henisch, Rectifying Semi-Conductor Contacts (Oxford U. Press, London, 1957).

M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).

M. Sprave, R. Blum, and M. Eich, “High electric field conduction mechanisms in electrode poling of electro-optic polymers,” Appl. Phys. Lett. 69, 2962 (1996); 70, 2056 (1997).
[CrossRef]

S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Energy band of an amorphous insulator under an electrical field. Localized energy states (traps) exist inside the classical bandgap, and electrical conduction is governed by excitation and retrapping of charges.

Fig. 2
Fig. 2

Schematic cross section of a metallized sandwich structure. The layers have different dielectric constants ε and contain dipolar charges and space charges (with planar charge density σ). If their magnitudes σi and their positions di inside the structure are known, the electric fields Ei can be calculated.

Fig. 3
Fig. 3

Chemical structures of (a) the inorganic cladding material [poly(methyl siloxane)] and of (b) the NLO side-chain polymer [poly(methyl methacrylate)] DR1 functionalized.

Fig. 4
Fig. 4

Left, experimental setup used for poling experiments. The induced dipole orientation is observed concurrently by SHG from a photomultiplier (PM) tube. HV, high-voltage supply. Right, Sample geometry with a transparent indium tin oxide (ITO) electrode and a shielded Teflon (PTFE) cable. The metal electrode on top is also used as a mirror.

Fig. 5
Fig. 5

Example of transient poling current (double logarithmic plot): current density of a single polymer layer (Au–ITO electrodes, Au biased positively) as a function of time at E=90 V/μm and T=120 °C. For 10 s<t<300 s a t-n behavior is observed (n0.7).

Fig. 6
Fig. 6

Square root of the SH intensity that is proportional to the achieved degree of chromophore orientation as a function of the applied electric field across the NLO layer, defined as EPOL=U/dTOTAL for various sample geometries (squares, single polymer layers; circles, polymer–0.13-μm siloxane; triangles, polymer–1.1-μm siloxane samples).

Fig. 7
Fig. 7

Poling current density versus square root of the electric-field strength (Schottky plot) for an Al–polymer–ITO sample (plus on the Al electrode) as a representative example for the current dependence of single polymer layers. For medium field strengths (20 V/μm<E<100 V/μm), the data can be fitted by a straight line. Beyond that region, deviations that are due to ohmic contributions and tunneling are observed (see text).

Fig. 8
Fig. 8

Fowler–Nordheim plot for Al–polymer–ITO samples and both polarities.

Fig. 9
Fig. 9

Fowler–Nordheim plot for Au–polymer–ITO samples and different polarities.

Fig. 10
Fig. 10

Fowler–Nordheim plot for Al–polymer–ITO and Al–polymer–Al configurations with positive bias on the top electrode.

Fig. 11
Fig. 11

Temperature dependence of current densities for the Al–polymer–ITO configuration (plus on the Al electrode) in a Fowler–Nordheim plot. The solid curves are the fits for superposition of Fowler–Nordheim and Schottky currents as described in the text.

Fig. 12
Fig. 12

Fowler–Nordheim plot for the Au–polymer–Au configuration (plus on the top electrode) at 120° and 80 °C. Solid curves represent fits (see text).

Fig. 13
Fig. 13

Fowler–Nordheim diagram for several samples with or without additional siloxane layers (Au–ITO electrodes, plus on the Au electrode). Squares, polymer only; circles, polymer with a thin (0.13-μm) siloxane layer; triangles, polymer with a thick (1.1-μm) siloxane layer; diamonds, single (1.1-μm) inorganic layer. A Schottky fit curve is shown for the single inorganic layer.

Fig. 14
Fig. 14

Cumulative number of single breakdown events per unit area (spikes/cm2) during a stepwise increase of applied poling field strength for single polymer layers and sandwich structures with both thin and thick siloxane layers.

Fig. 15
Fig. 15

Square root of SH intensity that is proportional to the achieved degree of chromophore orientation as a function of the applied electric field across the NLO layer, defined as EPOL=U/dTOTAL. The light shaded area denotes the dielectric breakdown regime for single polymer layers. The dark shaded area indicates the dielectric breakdown regime for samples with additional inorganic layers (symbols as in Fig. 13).    

Tables (1)

Tables Icon

Table 1 Tunneling Barrier Height and Inset Point for Various Electrode Configurations

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

j=(9/8)ε0εrμ(V2/L3),
j=j0 exp-Wi-βPFEkT,
jexp(-2αR)exp-WkTsinheREkTconst.sinheREkT
j=A*T2 exp-eΦ-βSEkT,
j=const.E2 exp-43 2m(eφ)3/2eE,
U=d1E1+d2E2+d3E3,
ε1E1-ε2E2=σ1/ε0,
ε2(E2-E3)=σ2/ε0.
ε0εrdE/dx=ρ(x),

Metrics