Abstract

Pulsed output was obtained from a cw diode-pumped Nd:YAG laser at 1.06 μm without the use of intracavity elements. This was achieved by tuning a stable amplitude modulation owing to polarization beating onto the natural relaxation-oscillation frequency of the laser cavity. Stable pulses were obtained at approximately 100 kHz with pulse widths of 500 ns. The pulse-repetition frequency changed with the relaxation-oscillation frequency of the resonator.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Danielmeyer and F. W. Ostermayer, “Diode-pump-modulated Nd:YAG laser,” J. Appl. Phys. 43, 2911–2913 (1972).
    [Crossref]
  2. H. G. Danielmeyer and W. G. Nilsen, “Spontaneous single frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124–126 (1970).
    [Crossref]
  3. H. G. Danielmeyer, “Low frequency dynamics of homogeneous 4 level cw lasers,” J. Appl. Phys. 41, 4014–4018 (1970).
    [Crossref]
  4. T. Kimura and K. Otsuka, “Response of a cw Nd:YAG laser to sinusoidal cavity perturbations,” IEEE J. Quantum Electron. QE-6, 764–769 (1970).
    [Crossref]
  5. K. Kubodera and K. Otsuka, “Spike mode oscillations in laser diode pumped LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-17, 1139–1144 (1981).
    [Crossref]
  6. S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
    [Crossref]
  7. A. Owyoung and P. Esherick, “Stress induced tuning of a diode laser excited monolithic Nd:YAG laser,” Opt. Lett. 12, 999–1001 (1987).
    [Crossref] [PubMed]
  8. B. Zhou, T. J. Kane, G. J. Dixon, and R. L. Byer, “Efficient frequency stable laser diode pumped Nd:YAG laser,” Opt. Lett. 10, 62–64 (1985).
    [Crossref] [PubMed]
  9. C. He and D. K. Killinger, “Dual polarization modes and self heterodyne noise in a single frequency 2.1 μm microchip Ho, Tm:YAG laser,” Opt. Lett. 19, 396–398 (1994).
    [PubMed]
  10. G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
    [Crossref]
  11. S. P. Bush, P. F. Mead, and C. C. Davis, “Strain induced birefringence two frequency operation of diode pumped Nd:YAG lasers,” presented at the IEEE Lasers and Electro-Optics Society 1991 Annual Meeting, San Jose, Calif., November 4–7, 1991, paper ELT 4.3.
  12. J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
    [Crossref]
  13. C. C. Chen and M. Z. Win, “Frequency noise measurements of diode-pumped Nd:YAG ring lasers,” IEEE Photonics Technol. Lett. 2, 772–773 (1990).
    [Crossref]
  14. K. J. Weingarten, B. Braun, and U. Keller, “In situ small signal gain of solid state lasers determined from relaxation oscillation frequency measurements,” Opt. Lett. 19, 1140–1142 (1994).
    [Crossref] [PubMed]

1996 (1)

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[Crossref]

1995 (1)

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[Crossref]

1994 (2)

1990 (1)

C. C. Chen and M. Z. Win, “Frequency noise measurements of diode-pumped Nd:YAG ring lasers,” IEEE Photonics Technol. Lett. 2, 772–773 (1990).
[Crossref]

1987 (1)

1985 (1)

1981 (1)

K. Kubodera and K. Otsuka, “Spike mode oscillations in laser diode pumped LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-17, 1139–1144 (1981).
[Crossref]

1976 (1)

S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
[Crossref]

1972 (1)

H. G. Danielmeyer and F. W. Ostermayer, “Diode-pump-modulated Nd:YAG laser,” J. Appl. Phys. 43, 2911–2913 (1972).
[Crossref]

1970 (3)

H. G. Danielmeyer and W. G. Nilsen, “Spontaneous single frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124–126 (1970).
[Crossref]

H. G. Danielmeyer, “Low frequency dynamics of homogeneous 4 level cw lasers,” J. Appl. Phys. 41, 4014–4018 (1970).
[Crossref]

T. Kimura and K. Otsuka, “Response of a cw Nd:YAG laser to sinusoidal cavity perturbations,” IEEE J. Quantum Electron. QE-6, 764–769 (1970).
[Crossref]

Baxter, G. W.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[Crossref]

Braun, B.

Bush, S. P.

S. P. Bush, P. F. Mead, and C. C. Davis, “Strain induced birefringence two frequency operation of diode pumped Nd:YAG lasers,” presented at the IEEE Lasers and Electro-Optics Society 1991 Annual Meeting, San Jose, Calif., November 4–7, 1991, paper ELT 4.3.

Byer, R. L.

Chen, C. C.

C. C. Chen and M. Z. Win, “Frequency noise measurements of diode-pumped Nd:YAG ring lasers,” IEEE Photonics Technol. Lett. 2, 772–773 (1990).
[Crossref]

Chinn, S. R.

S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
[Crossref]

Czarske, J. W.

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[Crossref]

Danielmeyer, H. G.

H. G. Danielmeyer and F. W. Ostermayer, “Diode-pump-modulated Nd:YAG laser,” J. Appl. Phys. 43, 2911–2913 (1972).
[Crossref]

H. G. Danielmeyer and W. G. Nilsen, “Spontaneous single frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124–126 (1970).
[Crossref]

H. G. Danielmeyer, “Low frequency dynamics of homogeneous 4 level cw lasers,” J. Appl. Phys. 41, 4014–4018 (1970).
[Crossref]

Davis, C. C.

S. P. Bush, P. F. Mead, and C. C. Davis, “Strain induced birefringence two frequency operation of diode pumped Nd:YAG lasers,” presented at the IEEE Lasers and Electro-Optics Society 1991 Annual Meeting, San Jose, Calif., November 4–7, 1991, paper ELT 4.3.

Dawes, J. M.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[Crossref]

Dekker, P.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[Crossref]

Dixon, G. J.

Esherick, P.

He, C.

Hong, H. Y.

S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
[Crossref]

Kane, T. J.

Keller, U.

Killinger, D. K.

Kimura, T.

T. Kimura and K. Otsuka, “Response of a cw Nd:YAG laser to sinusoidal cavity perturbations,” IEEE J. Quantum Electron. QE-6, 764–769 (1970).
[Crossref]

Knowles, D. S.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[Crossref]

Kubodera, K.

K. Kubodera and K. Otsuka, “Spike mode oscillations in laser diode pumped LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-17, 1139–1144 (1981).
[Crossref]

Mead, P. F.

S. P. Bush, P. F. Mead, and C. C. Davis, “Strain induced birefringence two frequency operation of diode pumped Nd:YAG lasers,” presented at the IEEE Lasers and Electro-Optics Society 1991 Annual Meeting, San Jose, Calif., November 4–7, 1991, paper ELT 4.3.

Mueller, H.

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[Crossref]

Nilsen, W. G.

H. G. Danielmeyer and W. G. Nilsen, “Spontaneous single frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124–126 (1970).
[Crossref]

Ostermayer, F. W.

H. G. Danielmeyer and F. W. Ostermayer, “Diode-pump-modulated Nd:YAG laser,” J. Appl. Phys. 43, 2911–2913 (1972).
[Crossref]

Otsuka, K.

K. Kubodera and K. Otsuka, “Spike mode oscillations in laser diode pumped LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-17, 1139–1144 (1981).
[Crossref]

T. Kimura and K. Otsuka, “Response of a cw Nd:YAG laser to sinusoidal cavity perturbations,” IEEE J. Quantum Electron. QE-6, 764–769 (1970).
[Crossref]

Owyoung, A.

Pierce, J. W.

S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
[Crossref]

Weingarten, K. J.

Win, M. Z.

C. C. Chen and M. Z. Win, “Frequency noise measurements of diode-pumped Nd:YAG ring lasers,” IEEE Photonics Technol. Lett. 2, 772–773 (1990).
[Crossref]

Zhou, B.

Appl. Phys. Lett. (1)

H. G. Danielmeyer and W. G. Nilsen, “Spontaneous single frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124–126 (1970).
[Crossref]

IEEE J. Quantum Electron. (3)

T. Kimura and K. Otsuka, “Response of a cw Nd:YAG laser to sinusoidal cavity perturbations,” IEEE J. Quantum Electron. QE-6, 764–769 (1970).
[Crossref]

K. Kubodera and K. Otsuka, “Spike mode oscillations in laser diode pumped LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-17, 1139–1144 (1981).
[Crossref]

S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
[Crossref]

IEEE Photonics Technol. Lett. (2)

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[Crossref]

C. C. Chen and M. Z. Win, “Frequency noise measurements of diode-pumped Nd:YAG ring lasers,” IEEE Photonics Technol. Lett. 2, 772–773 (1990).
[Crossref]

J. Appl. Phys. (2)

H. G. Danielmeyer, “Low frequency dynamics of homogeneous 4 level cw lasers,” J. Appl. Phys. 41, 4014–4018 (1970).
[Crossref]

H. G. Danielmeyer and F. W. Ostermayer, “Diode-pump-modulated Nd:YAG laser,” J. Appl. Phys. 43, 2911–2913 (1972).
[Crossref]

Opt. Commun. (1)

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[Crossref]

Opt. Lett. (4)

Other (1)

S. P. Bush, P. F. Mead, and C. C. Davis, “Strain induced birefringence two frequency operation of diode pumped Nd:YAG lasers,” presented at the IEEE Lasers and Electro-Optics Society 1991 Annual Meeting, San Jose, Calif., November 4–7, 1991, paper ELT 4.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Laser output polarization state is shown for a series of pump-polarization orientations. The output was dominated by a single linear polarization when the pump was polarized at 73° to the induced crystal axis. At 45° to the crystal axis, the output consisted of approximately equal components in each polarization.

Fig. 2
Fig. 2

(a) Power spectrum of the diode-pumped Nd:YAG laser, showing the characteristic relaxation-oscillation frequency (200 kHz), the polarization-beat frequency (800 kHz), and AM sidebands corresponding to the sum and difference of these frequencies. (b) A power spectrum when the laser beat frequency was adjusted so that the AM sideband approached the relaxation-oscillation frequency.

Fig. 3
Fig. 3

Time-domain plot showing enhanced modulation of the laser output with the major pulses occurring at a frequency of half the polarization-beat frequency.

Fig. 4
Fig. 4

Superposition of ten pulse trains in the moderate-enhancement regime. A small cw component is present. The amplitude and timing stability of the pulses is better than 1%.

Fig. 5
Fig. 5

(a) Superposition of ten pulse trains in the regime of maximum enhancement. No cw component was present. The amplitude variation was 10%, while the pulse jitter variation was 4%. The laser could operate without adjustment in this regime for more than 2 h. (b) The corresponding power spectrum of the laser in the maximum regime.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

fRO=12π (r-1)τcτ2,

Metrics