Abstract

Pulsed output was obtained from a cw diode-pumped Nd:YAG laser at 1.06 μm without the use of intracavity elements. This was achieved by tuning a stable amplitude modulation owing to polarization beating onto the natural relaxation-oscillation frequency of the laser cavity. Stable pulses were obtained at approximately 100 kHz with pulse widths of 500 ns. The pulse-repetition frequency changed with the relaxation-oscillation frequency of the resonator.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Danielmeyer and F. W. Ostermayer, “Diode-pump-modulated Nd:YAG laser,” J. Appl. Phys. 43, 2911–2913 (1972).
    [CrossRef]
  2. H. G. Danielmeyer and W. G. Nilsen, “Spontaneous single frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124–126 (1970).
    [CrossRef]
  3. H. G. Danielmeyer, “Low frequency dynamics of homogeneous 4 level cw lasers,” J. Appl. Phys. 41, 4014–4018 (1970).
    [CrossRef]
  4. T. Kimura and K. Otsuka, “Response of a cw Nd:YAG laser to sinusoidal cavity perturbations,” IEEE J. Quantum Electron. QE-6, 764–769 (1970).
    [CrossRef]
  5. K. Kubodera and K. Otsuka, “Spike mode oscillations in laser diode pumped LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-17, 1139–1144 (1981).
    [CrossRef]
  6. S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
    [CrossRef]
  7. A. Owyoung and P. Esherick, “Stress induced tuning of a diode laser excited monolithic Nd:YAG laser,” Opt. Lett. 12, 999–1001 (1987).
    [CrossRef] [PubMed]
  8. B. Zhou, T. J. Kane, G. J. Dixon, and R. L. Byer, “Efficient frequency stable laser diode pumped Nd:YAG laser,” Opt. Lett. 10, 62–64 (1985).
    [CrossRef] [PubMed]
  9. C. He and D. K. Killinger, “Dual polarization modes and self heterodyne noise in a single frequency 2.1 μm microchip Ho, Tm:YAG laser,” Opt. Lett. 19, 396–398 (1994).
    [PubMed]
  10. G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
    [CrossRef]
  11. S. P. Bush, P. F. Mead, and C. C. Davis, “Strain induced birefringence two frequency operation of diode pumped Nd:YAG lasers,” presented at the IEEE Lasers and Electro-Optics Society 1991 Annual Meeting, San Jose, Calif., November 4–7, 1991, paper ELT 4.3.
  12. J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
    [CrossRef]
  13. C. C. Chen and M. Z. Win, “Frequency noise measurements of diode-pumped Nd:YAG ring lasers,” IEEE Photonics Technol. Lett. 2, 772–773 (1990).
    [CrossRef]
  14. K. J. Weingarten, B. Braun, and U. Keller, “In situ small signal gain of solid state lasers determined from relaxation oscillation frequency measurements,” Opt. Lett. 19, 1140–1142 (1994).
    [CrossRef] [PubMed]

1996 (1)

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

1995 (1)

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[CrossRef]

1994 (2)

1990 (1)

C. C. Chen and M. Z. Win, “Frequency noise measurements of diode-pumped Nd:YAG ring lasers,” IEEE Photonics Technol. Lett. 2, 772–773 (1990).
[CrossRef]

1987 (1)

1985 (1)

1981 (1)

K. Kubodera and K. Otsuka, “Spike mode oscillations in laser diode pumped LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-17, 1139–1144 (1981).
[CrossRef]

1976 (1)

S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
[CrossRef]

1972 (1)

H. G. Danielmeyer and F. W. Ostermayer, “Diode-pump-modulated Nd:YAG laser,” J. Appl. Phys. 43, 2911–2913 (1972).
[CrossRef]

1970 (3)

H. G. Danielmeyer and W. G. Nilsen, “Spontaneous single frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124–126 (1970).
[CrossRef]

H. G. Danielmeyer, “Low frequency dynamics of homogeneous 4 level cw lasers,” J. Appl. Phys. 41, 4014–4018 (1970).
[CrossRef]

T. Kimura and K. Otsuka, “Response of a cw Nd:YAG laser to sinusoidal cavity perturbations,” IEEE J. Quantum Electron. QE-6, 764–769 (1970).
[CrossRef]

Baxter, G. W.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

Braun, B.

Byer, R. L.

Chen, C. C.

C. C. Chen and M. Z. Win, “Frequency noise measurements of diode-pumped Nd:YAG ring lasers,” IEEE Photonics Technol. Lett. 2, 772–773 (1990).
[CrossRef]

Chinn, S. R.

S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
[CrossRef]

Czarske, J. W.

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[CrossRef]

Danielmeyer, H. G.

H. G. Danielmeyer and F. W. Ostermayer, “Diode-pump-modulated Nd:YAG laser,” J. Appl. Phys. 43, 2911–2913 (1972).
[CrossRef]

H. G. Danielmeyer, “Low frequency dynamics of homogeneous 4 level cw lasers,” J. Appl. Phys. 41, 4014–4018 (1970).
[CrossRef]

H. G. Danielmeyer and W. G. Nilsen, “Spontaneous single frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124–126 (1970).
[CrossRef]

Dawes, J. M.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

Dekker, P.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

Dixon, G. J.

Esherick, P.

He, C.

Hong, H. Y.

S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
[CrossRef]

Kane, T. J.

Keller, U.

Killinger, D. K.

Kimura, T.

T. Kimura and K. Otsuka, “Response of a cw Nd:YAG laser to sinusoidal cavity perturbations,” IEEE J. Quantum Electron. QE-6, 764–769 (1970).
[CrossRef]

Knowles, D. S.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

Kubodera, K.

K. Kubodera and K. Otsuka, “Spike mode oscillations in laser diode pumped LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-17, 1139–1144 (1981).
[CrossRef]

Mueller, H.

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[CrossRef]

Nilsen, W. G.

H. G. Danielmeyer and W. G. Nilsen, “Spontaneous single frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124–126 (1970).
[CrossRef]

Ostermayer, F. W.

H. G. Danielmeyer and F. W. Ostermayer, “Diode-pump-modulated Nd:YAG laser,” J. Appl. Phys. 43, 2911–2913 (1972).
[CrossRef]

Otsuka, K.

K. Kubodera and K. Otsuka, “Spike mode oscillations in laser diode pumped LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-17, 1139–1144 (1981).
[CrossRef]

T. Kimura and K. Otsuka, “Response of a cw Nd:YAG laser to sinusoidal cavity perturbations,” IEEE J. Quantum Electron. QE-6, 764–769 (1970).
[CrossRef]

Owyoung, A.

Pierce, J. W.

S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
[CrossRef]

Weingarten, K. J.

Win, M. Z.

C. C. Chen and M. Z. Win, “Frequency noise measurements of diode-pumped Nd:YAG ring lasers,” IEEE Photonics Technol. Lett. 2, 772–773 (1990).
[CrossRef]

Zhou, B.

Appl. Phys. Lett. (1)

H. G. Danielmeyer and W. G. Nilsen, “Spontaneous single frequency output from a spatially homogeneous Nd:YAG laser,” Appl. Phys. Lett. 16, 124–126 (1970).
[CrossRef]

IEEE J. Quantum Electron. (3)

T. Kimura and K. Otsuka, “Response of a cw Nd:YAG laser to sinusoidal cavity perturbations,” IEEE J. Quantum Electron. QE-6, 764–769 (1970).
[CrossRef]

K. Kubodera and K. Otsuka, “Spike mode oscillations in laser diode pumped LiNdP4O12 lasers,” IEEE J. Quantum Electron. QE-17, 1139–1144 (1981).
[CrossRef]

S. R. Chinn, H. Y. Hong, and J. W. Pierce, “Spiking oscillations in diode pumped NdP5O14 and NdAl3(BO3)4 lasers,” IEEE J. Quantum Electron. QE-12, 189–193 (1976).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual polarization frequency-modulated laser source,” IEEE Photonics Technol. Lett. 8, 1015–1017 (1996).
[CrossRef]

C. C. Chen and M. Z. Win, “Frequency noise measurements of diode-pumped Nd:YAG ring lasers,” IEEE Photonics Technol. Lett. 2, 772–773 (1990).
[CrossRef]

J. Appl. Phys. (2)

H. G. Danielmeyer, “Low frequency dynamics of homogeneous 4 level cw lasers,” J. Appl. Phys. 41, 4014–4018 (1970).
[CrossRef]

H. G. Danielmeyer and F. W. Ostermayer, “Diode-pump-modulated Nd:YAG laser,” J. Appl. Phys. 43, 2911–2913 (1972).
[CrossRef]

Opt. Commun. (1)

J. W. Czarske and H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[CrossRef]

Opt. Lett. (4)

Other (1)

S. P. Bush, P. F. Mead, and C. C. Davis, “Strain induced birefringence two frequency operation of diode pumped Nd:YAG lasers,” presented at the IEEE Lasers and Electro-Optics Society 1991 Annual Meeting, San Jose, Calif., November 4–7, 1991, paper ELT 4.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Laser output polarization state is shown for a series of pump-polarization orientations. The output was dominated by a single linear polarization when the pump was polarized at 73° to the induced crystal axis. At 45° to the crystal axis, the output consisted of approximately equal components in each polarization.

Fig. 2
Fig. 2

(a) Power spectrum of the diode-pumped Nd:YAG laser, showing the characteristic relaxation-oscillation frequency (200 kHz), the polarization-beat frequency (800 kHz), and AM sidebands corresponding to the sum and difference of these frequencies. (b) A power spectrum when the laser beat frequency was adjusted so that the AM sideband approached the relaxation-oscillation frequency.

Fig. 3
Fig. 3

Time-domain plot showing enhanced modulation of the laser output with the major pulses occurring at a frequency of half the polarization-beat frequency.

Fig. 4
Fig. 4

Superposition of ten pulse trains in the moderate-enhancement regime. A small cw component is present. The amplitude and timing stability of the pulses is better than 1%.

Fig. 5
Fig. 5

(a) Superposition of ten pulse trains in the regime of maximum enhancement. No cw component was present. The amplitude variation was 10%, while the pulse jitter variation was 4%. The laser could operate without adjustment in this regime for more than 2 h. (b) The corresponding power spectrum of the laser in the maximum regime.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

fRO=12π (r-1)τcτ2,

Metrics