Abstract

A ZnGeP2 parametric amplifier was constructed, and the small-signal gain of a 3.39-μm He–Ne laser in excess of 10 was measured. With a 2.06-μm Ho:Tm:Er:YLF laser having a nominal 50-ns pulse length as a pump, small-signal gain was measured as a function of pump power. When compared with the predicted gain, taking into account the beam profile of both the pump and the signal, good agreement was found at low pump powers. However, the observed gain was less than predicted at higher pump powers. Pump-induced loss at 3.39 μm, a phenomenon not observed in other nonlinear crystals such as AgGeSe2, causes the difference. Pump-induced loss was observed when the ZnGeP2 crystal was tilted away from the phase-matching angle. Pump-induced loss at 3.39 μm was characterized and found to be directly proportional to the pump energy.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969).
    [CrossRef]
  2. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979); R. A. Baumgartner, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432–444 (1979).
    [CrossRef]
  3. N. P. Barnes, “Optical parametric oscillators,” in Tunable Laser Handbook, F. Duarte, ed. (Academic, New York, 1995), pp. 293–348.
  4. R. L. Herbst and R. L. Byer, “Singly resonant CdSe infrared parametric oscillator,” Appl. Phys. Lett. 21, 189–191 (1972).
    [CrossRef]
  5. J. A. Weiss and L. S. Goldberg, “Singly resonant CdSe parametric oscillator pumped by a HF laser,” Appl. Phys. Lett. 24, 389–391 (1974).
    [CrossRef]
  6. R. G. Wenzel and G. P. Arnold, “Parametric oscillator: HF oscillator-amplifier pumped CdSe parametric oscillator tunable from 14.1 μm to 16.4 μm,” Appl. Opt. 15, 1322–1326 (1976).
    [CrossRef] [PubMed]
  7. R. C. Eckhardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, and L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
    [CrossRef]
  8. N. P. Barnes, K. E. Murray, J. R. Hietanen, and R. A. Iannini, “Er:YLF pumped AgGaSe2 optical parametric oscillator,” in Advanced Solid-State Lasers, H. P. Jenssen and G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 322–328.
  9. P. A. Budni, M. G. Knights, and E. P. Chicklis, “Kilohertz AgGaSe2 optical parametric oscillator pumped at 2 μm,” Opt. Lett. 18, 1068–1070 (1993).
    [CrossRef]
  10. P. Ketteridge, P. Budni, I. Lee, P. Schunemann, and T. Pollak, “8-Micron ZGP OPO pumped at 2 microns,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 168–170.
  11. B. C. Ziegler and K. L. Schepler, “Transmission and damage threshold measurements in AgGaSe2 at 2.1 μm,” Appl. Opt. 30, 5077–5080 (1991).
    [CrossRef] [PubMed]
  12. N. P. Barnes and J. A. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B 12, 124–131 (1995).
    [CrossRef]
  13. G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
    [CrossRef]
  14. N. P. Barnes, D. J. Gettemy, J. R. Hietanen, and R. A. Iannini, “Parametric amplification in AgGaSe2,” Appl. Opt. 28, 5162–5168 (1989).
    [CrossRef] [PubMed]
  15. N. P. Barnes and K. E. Murray, “High gain optical nonlinear interactions with a 1.73 μm pump,” presented at the Tunable Solid State Laser Conference of the Optical Society of America, North Falmouth, Mass., May 1–3, 1989.
  16. J. D. Beasley, “Thermal conductivity of some novel nonlinear optical materials,” Appl. Opt. 33, 1000–1003 (1994).
    [CrossRef] [PubMed]
  17. L. E. Halliburton, G. J. Edwards, M. P. Scripsick, M. H. Rakowsky, P. G. Schunemann, and T. M. Pollak, “Electron-nuclear double resonance of the zinc vacancy in ZnGeP2,” Appl. Phys. Lett. (to be published).

1995 (1)

1994 (1)

1993 (1)

1991 (1)

1989 (1)

1986 (1)

R. C. Eckhardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, and L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

1976 (1)

1974 (1)

J. A. Weiss and L. S. Goldberg, “Singly resonant CdSe parametric oscillator pumped by a HF laser,” Appl. Phys. Lett. 24, 389–391 (1974).
[CrossRef]

1972 (1)

R. L. Herbst and R. L. Byer, “Singly resonant CdSe infrared parametric oscillator,” Appl. Phys. Lett. 21, 189–191 (1972).
[CrossRef]

1971 (1)

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

1969 (1)

S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969).
[CrossRef]

Arnold, G. P.

Barnes, N. P.

Beasley, J. D.

Boyd, G. D.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Budni, P. A.

Buehler, E.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Byer, R. L.

R. C. Eckhardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, and L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

R. L. Herbst and R. L. Byer, “Singly resonant CdSe infrared parametric oscillator,” Appl. Phys. Lett. 21, 189–191 (1972).
[CrossRef]

Chicklis, E. P.

Eckhardt, R. C.

R. C. Eckhardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, and L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Esterowitz, L.

R. C. Eckhardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, and L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Fan, Y. X.

R. C. Eckhardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, and L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Gettemy, D. J.

Goldberg, L. S.

J. A. Weiss and L. S. Goldberg, “Singly resonant CdSe parametric oscillator pumped by a HF laser,” Appl. Phys. Lett. 24, 389–391 (1974).
[CrossRef]

Harris, S. E.

S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969).
[CrossRef]

Herbst, R. L.

R. L. Herbst and R. L. Byer, “Singly resonant CdSe infrared parametric oscillator,” Appl. Phys. Lett. 21, 189–191 (1972).
[CrossRef]

Hietanen, J. R.

Iannini, R. A.

Knights, M. G.

Marquardt, C. L.

R. C. Eckhardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, and L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Schepler, K. L.

Storz, F. G.

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Weiss, J. A.

J. A. Weiss and L. S. Goldberg, “Singly resonant CdSe parametric oscillator pumped by a HF laser,” Appl. Phys. Lett. 24, 389–391 (1974).
[CrossRef]

Wenzel, R. G.

Williams-Byrd, J. A.

Ziegler, B. C.

Appl. Opt. (4)

Appl. Phys. Lett. (4)

G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

R. C. Eckhardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, and L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

R. L. Herbst and R. L. Byer, “Singly resonant CdSe infrared parametric oscillator,” Appl. Phys. Lett. 21, 189–191 (1972).
[CrossRef]

J. A. Weiss and L. S. Goldberg, “Singly resonant CdSe parametric oscillator pumped by a HF laser,” Appl. Phys. Lett. 24, 389–391 (1974).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Proc. IEEE (1)

S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE 57, 2096–2113 (1969).
[CrossRef]

Other (6)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979); R. A. Baumgartner, “Optical parametric amplification,” IEEE J. Quantum Electron. QE-15, 432–444 (1979).
[CrossRef]

N. P. Barnes, “Optical parametric oscillators,” in Tunable Laser Handbook, F. Duarte, ed. (Academic, New York, 1995), pp. 293–348.

P. Ketteridge, P. Budni, I. Lee, P. Schunemann, and T. Pollak, “8-Micron ZGP OPO pumped at 2 microns,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 168–170.

N. P. Barnes, K. E. Murray, J. R. Hietanen, and R. A. Iannini, “Er:YLF pumped AgGaSe2 optical parametric oscillator,” in Advanced Solid-State Lasers, H. P. Jenssen and G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 322–328.

N. P. Barnes and K. E. Murray, “High gain optical nonlinear interactions with a 1.73 μm pump,” presented at the Tunable Solid State Laser Conference of the Optical Society of America, North Falmouth, Mass., May 1–3, 1989.

L. E. Halliburton, G. J. Edwards, M. P. Scripsick, M. H. Rakowsky, P. G. Schunemann, and T. M. Pollak, “Electron-nuclear double resonance of the zinc vacancy in ZnGeP2,” Appl. Phys. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption in as-grown ZnGeP2.

Fig. 2
Fig. 2

Experimental arrangement used for the ZnGeP2 parametric amplifier.

Fig. 3
Fig. 3

Gain overcoming absorption: oscilloscope trace showing the no-signal level, the continuous-wave signal level, and the gain peak.

Fig. 4
Fig. 4

Parametric gain versus the ratio of pump energy over the pump-pulse length for ZnGeP2 crystal 1.

Fig. 5
Fig. 5

Parametric gain versus the ratio of pump energy over the pump-pulse length for ZnGeP2 crystal 3.

Fig. 6
Fig. 6

Pump pulse and induced absorption: oscilloscope trace showing the pump-induced loss. Decreased transmission through the crystal is in the upward direction.

Fig. 7
Fig. 7

Pump-induced loss versus time for times after the cessation of the pump pulse.

Fig. 8
Fig. 8

Pump-induced loss versus pump energy for ZnGeP2 crystal 1.

Fig. 9
Fig. 9

Pump-induced loss versus pump energy for ZnGeP2 crystal 3.

Tables (1)

Tables Icon

Table 1 Sellmeier Coefficients for ZnGeP2 (Wavelengths are in Micrometers)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n2=A+Bλ2/(λ2-C)+Dλ2/(λ2-E),
G=(Vmax-V0)/(Vcw-V0),
GA=0 2πw22 exp-2ρ2w22cosh2(Γl)2πρdρ,
Γ=8π2de2n1n2n3λ2λ3c0 2P1πw12 exp-2ρ2w121/2.

Metrics