Abstract

We present spatially and spectrally resolved measurements of light emerging from the focus of an intense 25-fs laser pulse in gaseous media. The pulses are focused inside a chamber backfilled with either argon or air to nominal vacuum intensities of up to 5×1015 W/cm2, far in excess of that necessary for ionization. We have recorded spectral-spatial maps for various pressures and pulse energies and have compared the results of argon and air. This survey is done in the regime where 0.1% of the laser light is converted into the third harmonic, which is of practical importance since it is the largest conversion efficiency measured to date while maintaining such a short pulse duration. These measurements are, to our knowledge, the first of their type and are performed with a laser beam of very high spatial quality. The dynamics of an intense laser focusing into a gas cell is complicated, and these measurements provide a way to compare numerical simulations with an array of experimental information. The experiments also determine the conditions for optimal third-harmonic spatial beam quality in this regime.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Backus, J. Peatross, E. Zeek, A. Rundquist, G. Taft, M. M. Murnane, and H. C. Kapteyn, “16 femtosecond, 1 μJ ultraviolet pulses generated by third-harmonic conversion in air,” Opt. Lett. 21, 665 (1996).
    [CrossRef] [PubMed]
  2. S. Backus, J. Peatross, C. P. Huang, M. M. Murnane, and H. C. Kapteyn, “Ti:sapphire amplifier producing millijoule-level, 21-fs pulses at 1 kHz,” Opt. Lett. 20, 2000 (1995).
    [CrossRef] [PubMed]
  3. J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57 (1969).
    [CrossRef]
  4. G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. QE-11, 287 (1975).
    [CrossRef]
  5. R. Eramo and M. Matera, “Third-harmonic generation in positively dispersive gases with a novel cell,” Appl. Opt. 33, 1691 (1994).
    [CrossRef] [PubMed]
  6. D. S. Bethune and C. T. Rettner, “Optical harmonic generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. QE-23, 1348 (1987).
    [CrossRef]
  7. A. L’Huillier, L. A. Lompre, M. Ferray, S. F. Li, G. Mainfray, and C. Manus, “Third-harmonic generation in xenon in a pulsed jet and a gas cell,” Europhys. Lett. 5, 601 (1988).
    [CrossRef]
  8. M. S. Malcuit, R. W. Boyd, W. V. Davis, and K. Rzazewski, “Anomalies in optical harmonic generation using high-intensity laser radiation,” Phys. Rev. A 41, 3822 (1990).
    [CrossRef] [PubMed]
  9. C. W. Siders, N. C. Turner III, M. C. Downer, A. Babine, A. Stepanov, and A. M. Sergeev, “Blueshifted third harmonic generation and correlated self-guiding during ultrafast barrier suppression ionization of subatmospheric density noble gases,” J. Opt. Soc. Am. B 13, 330 (1996).
    [CrossRef]
  10. E. Esarey, P. Sprangle, M. Pilloff, and J. Krall, “Theory and group velocity of ultrashort, tightly-focused laser pulses,” J. Opt. Soc. Am. B 12, 1695 (1995).
    [CrossRef]
  11. W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991).
    [CrossRef] [PubMed]
  12. T. Auguste, P. Monot, L.-A. Lompre, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89, 145 (1992).
    [CrossRef]
  13. B. M. Penetrante, J. N. Bardsley, W. M. Wood, C. W. Siders, and M. C. Downer, “Ionization-induced frequency shifts in intense femtosecond laser pulses,” J. Opt. Soc. Am. B 9, 2032 (1992).
    [CrossRef]
  14. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084 (1992).
    [CrossRef] [PubMed]
  15. S. P. Le Blanc, R. Sauerbrey, S. C. Rae, and K. Burnett, “Spectral blue shifting of a femtosecond laser pulse propagating through a high-pressure gas,” J. Opt. Soc. Am. B 10, 1801 (1993).
    [CrossRef]
  16. S. C. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun. 97, 25 (1993).
    [CrossRef]
  17. S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun. 104, 330 (1994).
    [CrossRef]
  18. E. E. Fill, “Focusing limits of ultrashort laser pulses: analytical theory,” J. Opt. Soc. Am. B 11, 2241 (1994).
    [CrossRef]
  19. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21, 62 (1996).
    [CrossRef] [PubMed]
  20. J. Zhou, C.-P. Huang, M. M. Murnane, and H. C. Kapteyn, “Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit in Ti:sapphire,” Opt. Lett. 20, 64 (1995).
    [CrossRef] [PubMed]
  21. S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212 (1989).
    [CrossRef] [PubMed]
  22. P. B. Corkum and C. Rolland, “Self-focusing and continuum generation in gases,” in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer-Verlag, New York, 1989), pp. 318–336.
  23. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 647–648.

1996

1995

1994

1993

1992

T. Auguste, P. Monot, L.-A. Lompre, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89, 145 (1992).
[CrossRef]

B. M. Penetrante, J. N. Bardsley, W. M. Wood, C. W. Siders, and M. C. Downer, “Ionization-induced frequency shifts in intense femtosecond laser pulses,” J. Opt. Soc. Am. B 9, 2032 (1992).
[CrossRef]

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084 (1992).
[CrossRef] [PubMed]

1991

W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991).
[CrossRef] [PubMed]

1990

M. S. Malcuit, R. W. Boyd, W. V. Davis, and K. Rzazewski, “Anomalies in optical harmonic generation using high-intensity laser radiation,” Phys. Rev. A 41, 3822 (1990).
[CrossRef] [PubMed]

1989

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212 (1989).
[CrossRef] [PubMed]

1988

A. L’Huillier, L. A. Lompre, M. Ferray, S. F. Li, G. Mainfray, and C. Manus, “Third-harmonic generation in xenon in a pulsed jet and a gas cell,” Europhys. Lett. 5, 601 (1988).
[CrossRef]

1987

D. S. Bethune and C. T. Rettner, “Optical harmonic generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. QE-23, 1348 (1987).
[CrossRef]

1975

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

1969

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57 (1969).
[CrossRef]

Augst, S.

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212 (1989).
[CrossRef] [PubMed]

Auguste, T.

T. Auguste, P. Monot, L.-A. Lompre, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89, 145 (1992).
[CrossRef]

Babine, A.

Backus, S.

Bardsley, J. N.

Bethune, D. S.

D. S. Bethune and C. T. Rettner, “Optical harmonic generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. QE-23, 1348 (1987).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

Boyd, R. W.

M. S. Malcuit, R. W. Boyd, W. V. Davis, and K. Rzazewski, “Anomalies in optical harmonic generation using high-intensity laser radiation,” Phys. Rev. A 41, 3822 (1990).
[CrossRef] [PubMed]

Burnett, K.

Chin, S. L.

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212 (1989).
[CrossRef] [PubMed]

Curley, P. F.

Davis, W. V.

M. S. Malcuit, R. W. Boyd, W. V. Davis, and K. Rzazewski, “Anomalies in optical harmonic generation using high-intensity laser radiation,” Phys. Rev. A 41, 3822 (1990).
[CrossRef] [PubMed]

Downer, M. C.

Eberly, J. H.

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212 (1989).
[CrossRef] [PubMed]

Eramo, R.

Esarey, E.

Ferray, M.

A. L’Huillier, L. A. Lompre, M. Ferray, S. F. Li, G. Mainfray, and C. Manus, “Third-harmonic generation in xenon in a pulsed jet and a gas cell,” Europhys. Lett. 5, 601 (1988).
[CrossRef]

Fill, E. E.

Franco, M. A.

Grillon, G.

Huang, C. P.

Huang, C.-P.

Kapteyn, H. C.

Krall, J.

L’Huillier, A.

A. L’Huillier, L. A. Lompre, M. Ferray, S. F. Li, G. Mainfray, and C. Manus, “Third-harmonic generation in xenon in a pulsed jet and a gas cell,” Europhys. Lett. 5, 601 (1988).
[CrossRef]

Le Blanc, S. P.

Li, S. F.

A. L’Huillier, L. A. Lompre, M. Ferray, S. F. Li, G. Mainfray, and C. Manus, “Third-harmonic generation in xenon in a pulsed jet and a gas cell,” Europhys. Lett. 5, 601 (1988).
[CrossRef]

Lompre, L. A.

A. L’Huillier, L. A. Lompre, M. Ferray, S. F. Li, G. Mainfray, and C. Manus, “Third-harmonic generation in xenon in a pulsed jet and a gas cell,” Europhys. Lett. 5, 601 (1988).
[CrossRef]

Lompre, L.-A.

T. Auguste, P. Monot, L.-A. Lompre, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89, 145 (1992).
[CrossRef]

Mainfray, G.

T. Auguste, P. Monot, L.-A. Lompre, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89, 145 (1992).
[CrossRef]

A. L’Huillier, L. A. Lompre, M. Ferray, S. F. Li, G. Mainfray, and C. Manus, “Third-harmonic generation in xenon in a pulsed jet and a gas cell,” Europhys. Lett. 5, 601 (1988).
[CrossRef]

Malcuit, M. S.

M. S. Malcuit, R. W. Boyd, W. V. Davis, and K. Rzazewski, “Anomalies in optical harmonic generation using high-intensity laser radiation,” Phys. Rev. A 41, 3822 (1990).
[CrossRef] [PubMed]

Manus, C.

T. Auguste, P. Monot, L.-A. Lompre, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89, 145 (1992).
[CrossRef]

A. L’Huillier, L. A. Lompre, M. Ferray, S. F. Li, G. Mainfray, and C. Manus, “Third-harmonic generation in xenon in a pulsed jet and a gas cell,” Europhys. Lett. 5, 601 (1988).
[CrossRef]

Matera, M.

Meyerhofer, D. D.

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212 (1989).
[CrossRef] [PubMed]

Monot, P.

T. Auguste, P. Monot, L.-A. Lompre, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89, 145 (1992).
[CrossRef]

Murnane, M. M.

Mysyrowicz, A.

New, G. H. C.

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57 (1969).
[CrossRef]

Nibbering, E. T. J.

Peatross, J.

Penetrante, B. M.

Pilloff, M.

Prade, B. S.

Rae, S. C.

S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun. 104, 330 (1994).
[CrossRef]

S. P. Le Blanc, R. Sauerbrey, S. C. Rae, and K. Burnett, “Spectral blue shifting of a femtosecond laser pulse propagating through a high-pressure gas,” J. Opt. Soc. Am. B 10, 1801 (1993).
[CrossRef]

S. C. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun. 97, 25 (1993).
[CrossRef]

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084 (1992).
[CrossRef] [PubMed]

Rettner, C. T.

D. S. Bethune and C. T. Rettner, “Optical harmonic generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. QE-23, 1348 (1987).
[CrossRef]

Rundquist, A.

Rzazewski, K.

M. S. Malcuit, R. W. Boyd, W. V. Davis, and K. Rzazewski, “Anomalies in optical harmonic generation using high-intensity laser radiation,” Phys. Rev. A 41, 3822 (1990).
[CrossRef] [PubMed]

Salin, F.

Sauerbrey, R.

Sergeev, A. M.

Siders, C. W.

Sprangle, P.

Stepanov, A.

Strickland, D.

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212 (1989).
[CrossRef] [PubMed]

Taft, G.

Turner III, N. C.

Ward, J. F.

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57 (1969).
[CrossRef]

Wood, W. M.

B. M. Penetrante, J. N. Bardsley, W. M. Wood, C. W. Siders, and M. C. Downer, “Ionization-induced frequency shifts in intense femtosecond laser pulses,” J. Opt. Soc. Am. B 9, 2032 (1992).
[CrossRef]

W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991).
[CrossRef] [PubMed]

Zeek, E.

Zhou, J.

Appl. Opt.

Europhys. Lett.

A. L’Huillier, L. A. Lompre, M. Ferray, S. F. Li, G. Mainfray, and C. Manus, “Third-harmonic generation in xenon in a pulsed jet and a gas cell,” Europhys. Lett. 5, 601 (1988).
[CrossRef]

IEEE J. Quantum Electron.

D. S. Bethune and C. T. Rettner, “Optical harmonic generation in nonuniform gaseous media with application to frequency tripling in free-jet expansions,” IEEE J. Quantum Electron. QE-23, 1348 (1987).
[CrossRef]

G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. C. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun. 97, 25 (1993).
[CrossRef]

S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun. 104, 330 (1994).
[CrossRef]

T. Auguste, P. Monot, L.-A. Lompre, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89, 145 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev.

J. F. Ward and G. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. 185, 57 (1969).
[CrossRef]

Phys. Rev. A

M. S. Malcuit, R. W. Boyd, W. V. Davis, and K. Rzazewski, “Anomalies in optical harmonic generation using high-intensity laser radiation,” Phys. Rev. A 41, 3822 (1990).
[CrossRef] [PubMed]

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, “Tunneling ionization of noble gases in a high-intensity laser field,” Phys. Rev. Lett. 63, 2212 (1989).
[CrossRef] [PubMed]

W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523 (1991).
[CrossRef] [PubMed]

Other

P. B. Corkum and C. Rolland, “Self-focusing and continuum generation in gases,” in The Supercontinuum Laser Source, R. R. Alfano, ed. (Springer-Verlag, New York, 1989), pp. 318–336.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 647–648.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: The laser beam is apertured and spatially filtered before it is focused inside a gas cell. The emerging light is collected and imaged to a far distance. A spectrometer intersects the beam for spectral analysis as a function of radial position. Near-normal-incidence curved mirrors were used rather than the three lenses depicted for convenience. The dimensions are given in centimeters.

Fig. 2
Fig. 2

Radial profiles and corresponding images of the laser beam profile. As indicated in Fig. 1, the beam profile was measured to be 119 cm before (upper) and at the imaged focus (lower). The upper contour data is shown together with a best-fit Gaussian curve. This curve is used to calculate the diffraction-limited curve shown together with the data taken at the imaged focus (lower).

Fig. 3
Fig. 3

(a) Fundamental and (b) third-harmonic spectra as functions of beam radial position for various pulse energies focused in 1000 Torr of argon. Position is expressed in units of 1/e2-intensity radius of the beam when the gas cell is evacuated. The brightness of the images should not be compared from frame to frame.

Fig. 4
Fig. 4

(a) Fundamental and (b) third-harmonic spectra as functions of beam radial position for a pulse energy of 0.9 mJ focused in various pressures of argon. Position is expressed in units of 1/e2-intensity radius of the beam when the gas cell is evacuated. The brightness of the images should not be compared from frame to frame.

Fig. 5
Fig. 5

Conversion efficiency of the third harmonic as a function of argon pressure.

Fig. 6
Fig. 6

Fundamental (left column) and third-harmonic (right column) spectra as functions of beam radial position for various pulse energies focused in 1 atm of air. Position is expressed in units of 1/e2-intensity radius of the beam when the gas cell is evacuated. The brightness of the images should not be compared from frame to frame.  

Metrics