Abstract

Spectral evolution of a laser beam propagated in a planar waveguide filled with a Kerr medium is studied. A significant spectral broadening appears at the soliton threshold power. This broadening becomes asymmetric on the Stokes side in an excitation higher than two times the soliton threshold. We show clearly that self-phase modulation and stimulated Rayleigh scattering contribute together to this broadening and prove that the later limits the generation of a high-order soliton.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maneuf, R. Desailly, and C. Froehly, Opt. Commun. 65, 193 (1988).
    [CrossRef]
  2. J. S. Aitchison, A. M. Weiner, Y. Silverberg, M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E. Smith, Opt. Lett. 15, 471 (1990).
    [CrossRef] [PubMed]
  3. A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Commun. 55, 201 (1985).
    [CrossRef]
  4. D. H. Reitze, A. M. Weiner, and D. E. Leaird, Opt. Lett. 16, 1409 (1991).
    [CrossRef] [PubMed]
  5. R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), p. 260.
  6. D. Wang, R. Barille, N. P. Xuan, and G. Rivoire, J. Opt. Soc. Am. B 14, 2584 (1997).
    [CrossRef]
  7. A. Fahmi, J. P. Bourdin, R. Chevalier, X. Nguyen Phu, and G. Rivoire, J. Opt. Soc. Am. B 12, 165 (1995).
  8. G. Rivoire and D. Wang, J. Chem. Phys. 99, 9460 (1993); J. Chem. Phys. 98, 9279 (1993).
    [CrossRef]
  9. S. C. Pinault and M. J. Potasek, J. Opt. Soc. Am. B 2, 1318 (1985).
    [CrossRef]
  10. G. S. He and P. N. Prasad, Phys. Rev. A 41, 2687 (1990).
    [CrossRef] [PubMed]
  11. J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
    [CrossRef]

1997 (1)

1995 (1)

A. Fahmi, J. P. Bourdin, R. Chevalier, X. Nguyen Phu, and G. Rivoire, J. Opt. Soc. Am. B 12, 165 (1995).

1993 (1)

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

1991 (1)

1990 (2)

1988 (1)

S. Maneuf, R. Desailly, and C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

1985 (2)

A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

S. C. Pinault and M. J. Potasek, J. Opt. Soc. Am. B 2, 1318 (1985).
[CrossRef]

Aitchison, J. S.

Barille, R.

Barthelemy, A.

A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

Bourdin, J. P.

A. Fahmi, J. P. Bourdin, R. Chevalier, X. Nguyen Phu, and G. Rivoire, J. Opt. Soc. Am. B 12, 165 (1995).

Chang, R. K.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Cheung, J. L.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Chevalier, R.

A. Fahmi, J. P. Bourdin, R. Chevalier, X. Nguyen Phu, and G. Rivoire, J. Opt. Soc. Am. B 12, 165 (1995).

Desailly, R.

S. Maneuf, R. Desailly, and C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

Fahmi, A.

A. Fahmi, J. P. Bourdin, R. Chevalier, X. Nguyen Phu, and G. Rivoire, J. Opt. Soc. Am. B 12, 165 (1995).

Froehly, C.

S. Maneuf, R. Desailly, and C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

He, G. S.

G. S. He and P. N. Prasad, Phys. Rev. A 41, 2687 (1990).
[CrossRef] [PubMed]

Jackel, J. L.

Juvan, K. A.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Kwok, A. S.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Leach, D. H.

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

Leaird, D. E.

Maneuf, S.

S. Maneuf, R. Desailly, and C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

Oliver, M. K.

Phu, X. Nguyen

A. Fahmi, J. P. Bourdin, R. Chevalier, X. Nguyen Phu, and G. Rivoire, J. Opt. Soc. Am. B 12, 165 (1995).

Pinault, S. C.

Potasek, M. J.

Prasad, P. N.

G. S. He and P. N. Prasad, Phys. Rev. A 41, 2687 (1990).
[CrossRef] [PubMed]

Reitze, D. H.

Rivoire, G.

D. Wang, R. Barille, N. P. Xuan, and G. Rivoire, J. Opt. Soc. Am. B 14, 2584 (1997).
[CrossRef]

A. Fahmi, J. P. Bourdin, R. Chevalier, X. Nguyen Phu, and G. Rivoire, J. Opt. Soc. Am. B 12, 165 (1995).

Silverberg, Y.

Smith, P. W. E.

Vogel, E. M.

Wang, D.

Weiner, A. M.

Xuan, N. P.

Chem. Phys. Lett. (1)

J. L. Cheung, A. S. Kwok, K. A. Juvan, D. H. Leach, and R. K. Chang, Chem. Phys. Lett. 213, 309 (1993).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

S. Maneuf, R. Desailly, and C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

G. S. He and P. N. Prasad, Phys. Rev. A 41, 2687 (1990).
[CrossRef] [PubMed]

Other (2)

R. W. Boyd, Nonlinear Optics (Academic, New York, 1992), p. 260.

G. Rivoire and D. Wang, J. Chem. Phys. 99, 9460 (1993); J. Chem. Phys. 98, 9279 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Three-dimensional view of the waveguide with reference axes.

Fig. 2
Fig. 2

Spatial evolution of the output beam at the end face of the waveguide with an increase of power.

Fig. 3
Fig. 3

Spectral evolution with the input power. The point zero on the λ axis refers to the laser line ω=18 797 cm-1.

Fig. 4
Fig. 4

Comparison between simulation (solid line) and experience (*) of the spectral broadening in the waveguide. For input power of more than 2.2Ps, the experimental data deviate from the prediction based on a simple self-phase modulation model.

Fig. 5
Fig. 5

Comparison between the measured spectral broadening [column (a)] and the simulation with phase perturbation [column (b)]. In the simulation, E(z, t)=A(t)exp[iδϕ(z, t)] with a Gaussian pulse envelope A(t) and a phase perturbation δϕ(z, t).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2ik Az=-2Ax2-2k2 n2n0 |A2|A,
iuτ+uξξ+|u2|u=0.
u(ξ, τ)=2 exp(-iτ) 1ch(ξ)
E(x, z, t)=λa0 n02n21chπxa0×expi-π2 zlf+kz-ωt,
Ps=n02xinn2yink2,
Pc=π(0.61)2λ28n0n2,
0.61λn0yin=8n2Pcπn0yinyout.
ΔσoutΔσin=[1+(0.88ϕ)2]1/2,

Metrics