Abstract

We propose a physical model to explain peculiarities of photorefractive recording and dark decay detected in LiNbO3 crystals within temperature ranges below and above 200 °C. Distinctive features of our description are proximity of the activation energies for protons and thermally excited electrons and their competitive contributions to the charge transport.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  2. D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3 crystals,” Appl. Phys. Lett. 26, 182–184 (1975).
    [CrossRef]
  3. W. Meyer, P. Wurfel, R. Münser, and Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
    [CrossRef]
  4. V. V. Kulikov, and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).
  5. H. Vorman, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3,” Solid State Commun. 57, 543–545 (1981).
    [CrossRef]
  6. P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
    [CrossRef]
  7. M. Carrascosa and F. Agulló-López, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
    [CrossRef]
  8. S. Klauer, M. Wöhlecke, and S. Kaphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
    [CrossRef]
  9. G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993).
    [CrossRef]
  10. M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
    [CrossRef]
  11. M. Jeganathan and L. Hesselink, “Diffraction from thermally fixed gratings in a photorefractive medium: steady state and transient analysis,” J. Opt. Soc. Am. B 9, 1791–1799 (1994).
    [CrossRef]
  12. A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
    [CrossRef] [PubMed]
  13. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  14. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
    [CrossRef]
  15. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, and L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996).
    [CrossRef] [PubMed]
  16. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 3349–3392 (1996).
    [CrossRef]
  17. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996).
    [CrossRef]
  18. K. Buse, S. Beer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
    [CrossRef]
  19. B. Sturman and V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, Philadelphia, 1992).
  20. V. M. Fridkin, Photoferroelectrics (Springer-Verlag, New York, 1979).
  21. P. Günter and J.-P. Huignard, Photorefractive Effects and Materials, Vol. 61 of Topics in Applied Physics (Springer-Verlag, New York, 1988), pp. 7–73.
    [CrossRef]

1997 (1)

K. Buse, S. Beer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

1996 (3)

1995 (1)

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

1994 (3)

M. Jeganathan and L. Hesselink, “Diffraction from thermally fixed gratings in a photorefractive medium: steady state and transient analysis,” J. Opt. Soc. Am. B 9, 1791–1799 (1994).
[CrossRef]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993 (2)

1992 (1)

S. Klauer, M. Wöhlecke, and S. Kaphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
[CrossRef]

1990 (1)

1987 (1)

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

1981 (1)

H. Vorman, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

1979 (2)

W. Meyer, P. Wurfel, R. Münser, and Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

V. V. Kulikov, and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

1975 (1)

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3 crystals,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

1971 (1)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Agulló-López, F.

Amodei, J. J.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3 crystals,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Arizmendi, L.

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

Bashaw, M. C.

Beer, S.

K. Buse, S. Beer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Burke, W. J.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3 crystals,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Buse, K.

K. Buse, S. Beer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Cabrera, J. M.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 3349–3392 (1996).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

Carrascosa, M.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 3349–3392 (1996).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
[CrossRef]

Daiber, A. J.

Dieguez, E.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 3349–3392 (1996).
[CrossRef]

Gao, M.

K. Buse, S. Beer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Günter, P.

Heanue, J. F.

Hertel, P.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, and L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

M. Jeganathan and L. Hesselink, “Diffraction from thermally fixed gratings in a photorefractive medium: steady state and transient analysis,” J. Opt. Soc. Am. B 9, 1791–1799 (1994).
[CrossRef]

Jeganathan, M.

M. Jeganathan and L. Hesselink, “Diffraction from thermally fixed gratings in a photorefractive medium: steady state and transient analysis,” J. Opt. Soc. Am. B 9, 1791–1799 (1994).
[CrossRef]

Kaphan, S.

S. Klauer, M. Wöhlecke, and S. Kaphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
[CrossRef]

Kapphan, S.

K. Buse, S. Beer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

H. Vorman, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

Kewitsch, A. S.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[CrossRef] [PubMed]

Klauer, S.

S. Klauer, M. Wöhlecke, and S. Kaphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
[CrossRef]

Krätzig, E.

K. Buse, S. Beer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Kulikov, V. V.

V. V. Kulikov, and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Meyer, W.

W. Meyer, P. Wurfel, R. Münser, and Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

Montemezzani, G.

Müller, R.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 3349–3392 (1996).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

Müller-Vogt,

W. Meyer, P. Wurfel, R. Münser, and Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

Münser, R.

W. Meyer, P. Wurfel, R. Münser, and Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

Neurgaonkar, R. R.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[CrossRef] [PubMed]

Olivares, J.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 3349–3392 (1996).
[CrossRef]

Orlov, S. S.

Peithmann, K.

K. Buse, S. Beer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Phillips, W.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3 crystals,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Rakuljic, G. A.

Rams, J.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 3349–3392 (1996).
[CrossRef]

Ringhofer, K. H.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Salamo, G. J.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[CrossRef] [PubMed]

Segev, M.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[CrossRef] [PubMed]

Sharp, E. J.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[CrossRef] [PubMed]

Snyder, R.

Sommerfeldt, R.

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Staebler, D. L.

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3 crystals,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Stepanov, S. I.

V. V. Kulikov, and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Towe, T. W.

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[CrossRef] [PubMed]

Vorman, H.

H. Vorman, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

Weber, G.

H. Vorman, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

Wöhlecke, M.

S. Klauer, M. Wöhlecke, and S. Kaphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
[CrossRef]

H. Vorman, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

Wurfel, P.

W. Meyer, P. Wurfel, R. Münser, and Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

Yariv, A.

A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996).
[CrossRef]

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[CrossRef] [PubMed]

Zgonik, M.

Adv. Phys. (1)

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 3349–3392 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electrooptic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3 crystals,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. Appl. Phys. (2)

M. Carrascosa and L. Arizmendi, “High-temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Lett. (1)

Phys. Rev. B (2)

S. Klauer, M. Wöhlecke, and S. Kaphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys. Rev. B 45, 2786–2799 (1992).
[CrossRef]

K. Buse, S. Beer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium niobate crystals,” Phys. Rev. B 56, 1225–1235 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

A. S. Kewitsch, M. Segev, A. Yariv, G. J. Salamo, T. W. Towe, E. J. Sharp, and R. R. Neurgaonkar, “Ferroelectric domain gratings in strontium barium niobate induced by photorefractive space charge fields,” Phys. Rev. Lett. 73, 1174–1177 (1994).
[CrossRef] [PubMed]

Phys. Status Solidi A (2)

P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

W. Meyer, P. Wurfel, R. Münser, and Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Solid State Commun. (1)

H. Vorman, G. Weber, S. Kapphan, and M. Wöhlecke, “Hydrogen as origin of thermal fixing in LiNbO3,” Solid State Commun. 57, 543–545 (1981).
[CrossRef]

Sov. Phys. Solid State (1)

V. V. Kulikov, and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).

Other (3)

B. Sturman and V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, Philadelphia, 1992).

V. M. Fridkin, Photoferroelectrics (Springer-Verlag, New York, 1979).

P. Günter and J.-P. Huignard, Photorefractive Effects and Materials, Vol. 61 of Topics in Applied Physics (Springer-Verlag, New York, 1988), pp. 7–73.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Arrhenius plots of the electron and proton relaxation rates for εh=1.2 eV, εeph=0.2 eV, Nt=5×1017 cm-3, H0 =3×1018 cm-3, μh0=15 cm2/Vs, μe0/μh0=150, and gph=3 ×1017 cm-3 s-1 (I010-1 W cm-2).

Fig. 2
Fig. 2

(a) Kinetic plots of |EK(t)| for γeTH0=γhNt/2 and K =105 cm-1; the solid curves correspond to recording and the dashed curves to the dark decay for two different recording times (tr(1) and tr(2)). (b) The same for γeTH0=3γhNt; the insert shows in detail the decay curve for ttr(1). The crystal parameters are the same as for Fig. 1.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Ez=e0 (δH+δN+-δn),
Ht=-1e jhz,
N+t=siN0(I+IT)-srN+,
nt=1e jez+N+t.
je=eμenE+μekBT nz+βIN0,
jh=eμhHE-μhkBT Hz,
dNK+dt+γe(1+ξe)NK++γeHK=FK,
dHKdt+γhNK++γh(1+ξh)HK=0.
γe=eμen0/0,γh=eμhH0/0,
ξe=ED/Eq-iEpvNAγeph/EqNγe,
ξh=EDNt/EqH0,
FK=-imNtγephEeff/2Eq,
EK=-iEq(NK++HK)/Nt.
Γf=γe+γh,
Γs=γeγhγe+γh EDEq 1+NtH0-i EpvEq NAN γephγe.
Tc(εeT-εh)kB ln(μe0/μh0),
Γfγh, ΓsK2μe0kBTe (1+Nt/H0)exp(-εeT/kBT).
EKQEeffm2 γephγe+γh, EKEeffm2 γephγe 1+H0Nt-1.
EK(tr+td)EK(tr)=exp(-ΓfTtd)+ρ exp(-ΓsTtd)1+ρ.
ρ(γhNt-γeTH0)[1-exp(-Γstr)]/γeT(H0+Nt).

Metrics