Abstract

Preillumination of Bi4Ti3O12 at low temperature causes a transient enhancement of diffraction efficiency for subsequent holographic recording. Diffraction efficiencies are measured that are up to ten times larger than the stationary value. The enhancement depends on the intensity of the preillumination, on the dark delay time, and on the crystal temperature. The effect can be explained considering electron–hole competition and contributions of different levels to the charge transport.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Application, II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
  2. X. Yue, F. Mersch, R. Rupp, U. Hellwig, and M. Simon, “Holographic recording and beam coupling in ferroelectric Bi4Ti3O12,” Phys. Rev. B 53, 8967 (1996).
    [CrossRef]
  3. X. Yue, J. Xu, F. Mersch, R. Rupp, and E. Krätzig, “Photorefractive properties of Bi4Ti3O12,” Phys. Rev. B 55, 9495 (1997).
    [CrossRef]
  4. X. Yue, F. Mersch, R. A. Rupp, and E. Krätzig, “Absorption gratings in ferroelectric Bi4Ti3O12,” Appl. Phys. B (to be published).
  5. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  6. N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state,” Ferroelectrics 22, 949 (1979).
    [CrossRef]
  7. J. Feinberg, D. H. Heiman, J. A. R. Tanguary, and R. W. Wellwarth, “Photorefractive effect and light-induced charge migration in BaTiO3,” J. Appl. Phys. 51, 537 (1980).
    [CrossRef]
  8. J. P. Wilde and L. Hesselink, “Electric-field-controlled diffraction in photorefractive strontium barium niobate,” Opt. Lett. 17, 853 (1992).
    [CrossRef] [PubMed]
  9. K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
    [CrossRef]
  10. K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161 (1993).
    [CrossRef]
  11. G. A. Brost, R. A. Motes, and J. R. Rotgé, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879 (1989).
    [CrossRef]
  12. K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
    [CrossRef]
  13. F. P. Strohkendl, “Light-induced dark decays of photorefractive gratings and their observation in Bi12SiO20,” J. Appl. Phys. 65, 3773 (1989).
    [CrossRef]
  14. P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
    [CrossRef]
  15. R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
    [CrossRef]
  16. L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
    [CrossRef]
  17. D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
    [CrossRef] [PubMed]
  18. K. Buse and T. Bierwirth, “Dynamics of light-induced absorption in BaTiO3 and application for intensity stabilization,” J. Opt. Soc. Am. B 12, 629 (1995).
    [CrossRef]
  19. N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).

1997

X. Yue, J. Xu, F. Mersch, R. Rupp, and E. Krätzig, “Photorefractive properties of Bi4Ti3O12,” Phys. Rev. B 55, 9495 (1997).
[CrossRef]

1996

X. Yue, F. Mersch, R. Rupp, U. Hellwig, and M. Simon, “Holographic recording and beam coupling in ferroelectric Bi4Ti3O12,” Phys. Rev. B 53, 8967 (1996).
[CrossRef]

1995

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

K. Buse and T. Bierwirth, “Dynamics of light-induced absorption in BaTiO3 and application for intensity stabilization,” J. Opt. Soc. Am. B 12, 629 (1995).
[CrossRef]

1993

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161 (1993).
[CrossRef]

1992

1991

1990

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

1989

G. A. Brost, R. A. Motes, and J. R. Rotgé, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879 (1989).
[CrossRef]

F. P. Strohkendl, “Light-induced dark decays of photorefractive gratings and their observation in Bi12SiO20,” J. Appl. Phys. 65, 3773 (1989).
[CrossRef]

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

1980

J. Feinberg, D. H. Heiman, J. A. R. Tanguary, and R. W. Wellwarth, “Photorefractive effect and light-induced charge migration in BaTiO3,” J. Appl. Phys. 51, 537 (1980).
[CrossRef]

1979

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

1976

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Bierwirth, T.

Brost, G. A.

Buse, K.

K. Buse and T. Bierwirth, “Dynamics of light-induced absorption in BaTiO3 and application for intensity stabilization,” J. Opt. Soc. Am. B 12, 629 (1995).
[CrossRef]

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161 (1993).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
[CrossRef]

Feinberg, J.

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

J. Feinberg, D. H. Heiman, J. A. R. Tanguary, and R. W. Wellwarth, “Photorefractive effect and light-induced charge migration in BaTiO3,” J. Appl. Phys. 51, 537 (1980).
[CrossRef]

Heiman, D. H.

J. Feinberg, D. H. Heiman, J. A. R. Tanguary, and R. W. Wellwarth, “Photorefractive effect and light-induced charge migration in BaTiO3,” J. Appl. Phys. 51, 537 (1980).
[CrossRef]

Hellwig, U.

X. Yue, F. Mersch, R. Rupp, U. Hellwig, and M. Simon, “Holographic recording and beam coupling in ferroelectric Bi4Ti3O12,” Phys. Rev. B 53, 8967 (1996).
[CrossRef]

Hesselink, L.

Holtmann, L.

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Krätzig, E.

X. Yue, J. Xu, F. Mersch, R. Rupp, and E. Krätzig, “Photorefractive properties of Bi4Ti3O12,” Phys. Rev. B 55, 9495 (1997).
[CrossRef]

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).

Mahgerefteh, D.

P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive effect for Bi12SiO20 and BaTiO3 with shallow traps,” J. Opt. Soc. Am. B 8, 1053 (1991).
[CrossRef]

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Maillard, A.

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Mersch, F.

X. Yue, J. Xu, F. Mersch, R. Rupp, and E. Krätzig, “Photorefractive properties of Bi4Ti3O12,” Phys. Rev. B 55, 9495 (1997).
[CrossRef]

X. Yue, F. Mersch, R. Rupp, U. Hellwig, and M. Simon, “Holographic recording and beam coupling in ferroelectric Bi4Ti3O12,” Phys. Rev. B 53, 8967 (1996).
[CrossRef]

Motes, R. A.

Odoulov, S.

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Ringhofer, K. H.

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161 (1993).
[CrossRef]

Rotgé, J. R.

Rupp, R.

X. Yue, J. Xu, F. Mersch, R. Rupp, and E. Krätzig, “Photorefractive properties of Bi4Ti3O12,” Phys. Rev. B 55, 9495 (1997).
[CrossRef]

X. Yue, F. Mersch, R. Rupp, U. Hellwig, and M. Simon, “Holographic recording and beam coupling in ferroelectric Bi4Ti3O12,” Phys. Rev. B 53, 8967 (1996).
[CrossRef]

Rupp, R. A.

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Simon, M.

X. Yue, F. Mersch, R. Rupp, U. Hellwig, and M. Simon, “Holographic recording and beam coupling in ferroelectric Bi4Ti3O12,” Phys. Rev. B 53, 8967 (1996).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Strohkendl, F. P.

F. P. Strohkendl, “Light-induced dark decays of photorefractive gratings and their observation in Bi12SiO20,” J. Appl. Phys. 65, 3773 (1989).
[CrossRef]

Tanguary, J. A. R.

J. Feinberg, D. H. Heiman, J. A. R. Tanguary, and R. W. Wellwarth, “Photorefractive effect and light-induced charge migration in BaTiO3,” J. Appl. Phys. 51, 537 (1980).
[CrossRef]

Tayebati, P.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Walter, J.

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Wellwarth, R. W.

J. Feinberg, D. H. Heiman, J. A. R. Tanguary, and R. W. Wellwarth, “Photorefractive effect and light-induced charge migration in BaTiO3,” J. Appl. Phys. 51, 537 (1980).
[CrossRef]

Wilde, J. P.

Xu, J.

X. Yue, J. Xu, F. Mersch, R. Rupp, and E. Krätzig, “Photorefractive properties of Bi4Ti3O12,” Phys. Rev. B 55, 9495 (1997).
[CrossRef]

Yue, X.

X. Yue, J. Xu, F. Mersch, R. Rupp, and E. Krätzig, “Photorefractive properties of Bi4Ti3O12,” Phys. Rev. B 55, 9495 (1997).
[CrossRef]

X. Yue, F. Mersch, R. Rupp, U. Hellwig, and M. Simon, “Holographic recording and beam coupling in ferroelectric Bi4Ti3O12,” Phys. Rev. B 53, 8967 (1996).
[CrossRef]

Appl. Phys. A

K. Buse and K. H. Ringhofer, “Pyroelectric drive for light-induced charge transport in the photorefractive process,” Appl. Phys. A 57, 161 (1993).
[CrossRef]

R. A. Rupp, A. Maillard, and J. Walter, “Impact of the sublinear photoconductivity law on the interpretation of holographic results in BaTiO3,” Appl. Phys. A 49, 259 (1989).
[CrossRef]

Appl. Phys. B

K. Buse and E. Krätzig, “Three-valence charge-transport model for explanation of the photorefractive effect,” Appl. Phys. B 61, 27 (1995).
[CrossRef]

K. Buse, “Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64, 273 (1997).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state,” Ferroelectrics 22, 949 (1979).
[CrossRef]

J. Appl. Phys.

J. Feinberg, D. H. Heiman, J. A. R. Tanguary, and R. W. Wellwarth, “Photorefractive effect and light-induced charge migration in BaTiO3,” J. Appl. Phys. 51, 537 (1980).
[CrossRef]

F. P. Strohkendl, “Light-induced dark decays of photorefractive gratings and their observation in Bi12SiO20,” J. Appl. Phys. 65, 3773 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. B

X. Yue, F. Mersch, R. Rupp, U. Hellwig, and M. Simon, “Holographic recording and beam coupling in ferroelectric Bi4Ti3O12,” Phys. Rev. B 53, 8967 (1996).
[CrossRef]

X. Yue, J. Xu, F. Mersch, R. Rupp, and E. Krätzig, “Photorefractive properties of Bi4Ti3O12,” Phys. Rev. B 55, 9495 (1997).
[CrossRef]

Phys. Rev. Lett.

D. Mahgerefteh and J. Feinberg, “Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate,” Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Phys. Status Solidi A

L. Holtmann, “A model for the nonlinear photoconductivity of BaTiO3,” Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

Sov. Tech. Phys. Lett.

N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438 (1976).

Other

X. Yue, F. Mersch, R. A. Rupp, and E. Krätzig, “Absorption gratings in ferroelectric Bi4Ti3O12,” Appl. Phys. B (to be published).

P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Application, II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Evolution of diffraction efficiency η at a temperature of 120 K. Wavelength and intensity of the recording light are 514.5 nm and 1 W/cm2. The recording light is interrupted for some times as indicated, i.e., switched on and then off.

Fig. 2
Fig. 2

Evolution of diffraction efficiency η at 120 K. After 3 s the recording light is switched off, and after 12 s the crystal is homogeneously illuminated. Light wavelength is 514.5 nm; intensity is 1 W/cm2 for recording and 0.5 W/cm2 for homogeneous illumination.

Fig. 3
Fig. 3

Diffraction-efficiency-enhancement factor M at 120 K as a function of the duration tp of homogeneous preillumination. After preillumination and a period of 10 s in the dark, a holographic grating is recorded. Light wavelength is 514.5 nm; intensity is 5 W/cm2 for preillumination and 1 W/cm2 for recording.

Fig. 4
Fig. 4

Diffraction-efficiency-enhancement factor M at 120 K as a function of the intensity Ip of preillumination. After 100 s of homogeneous preillumination the crystal is kept for 10 s in the dark, and subsequently a holographic grating is recorded. Light wavelength and intensity of the recording light are 514.5 nm and 1 W/cm2.

Fig. 5
Fig. 5

Diffraction-efficiency-enhancement factor M as a function of dark-delay time td. The sample is homogeneously preilluminated for 100 s and, after td a holographic grating is recorded. Light wavelengths and intensities are 514.5 nm and 4 W/cm2 for preillumination and 514.5 nm and 1 W/cm2 for recording. The crystal temperature is 120 K.

Fig. 6
Fig. 6

Enhancement factor M as a function of crystal temperature. After 100 s of preillumination the crystal is kept 10 s in the dark, and subsequently a holographic grating is recorded. Light wavelengths and intensities are 514.5 nm and 4 W/cm2 for preillumination and 514.5 nm and 1 W/cm2 for recording.

Fig. 7
Fig. 7

Band diagram of the charge-transport model. A deep center CD and two different shallow levels C1 and C2 are present. The arrows indicate possible excitations and recombinations of electrons (CB, conduction band; VB, valence band).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

η=(πΔnd/λ cos θ)2,
Δn=-12 n03reffEsc,
Esc=ED1+ED/Eq.
dN1-dt=-(q1S1Ip+β1)N1-+r1(N1-N1-)Ne,
dN2-dt=-(q2S2Ip+β2)N2-+r2(N2-N2-)Ne,
N1-(t=0)=N1,-[1-exp(-tp/τp)],
N1,-=r1N1Neτp,
τp=(q1S1Ip+β1+r1Ne)-1.
dNedt=-RNe+β1N1-+β2N2-,
R=[rD(ND-ND-)+r1(N1-N1-)+r2(N2-N2-)],
Ne=(β1N1-+β2N2-)/R.
dN1-dt=-β1(1-r1N1R-1)N1-+β2r1N1R-1N2-,
dN2-dt=+β1r2N2R-1N1--β2(1-r2N2R-1)N2-.
N1-(td)=N1-(t=0)exp(-td/τ1),
N2-(td)=N˜2- exp(-td/τ1)-N˜2- exp(-td/τ2),
τ1=[β1(1-r1N1R-1)],
τ2=[β2(1-r2N2R-1)],
N˜2-=(τ2-1-τ1-1)-1β1r2N2R-1N1-,(t=0),
M=σe,st/σh,st-1+γN2-σe,st/σh,st+1+γN2-σe,st/σh,st+1σe,st/σh,st-12,
γN2-=a1{1-exp[-tp(a2Ip+a3)]}×[exp(-td/τ2)-exp(-td/τ1)],

Metrics