Abstract

We report the experimental shaping of dark-soliton pulse trains at a several-gigahertz repetition rate by means of a simple sinusoidal fiber Bragg grating used as a highly resolving passive filtering element at the output of a conventional mode-locked laser source. We show that the proper choice of grating parameters allows for the transformation of bright-pulse trains into odd-symmetry dark-pulse trains with cw background. The results of a propagation experiment with a 7-km-long fiber demonstrate, together with numerical simulations, the efficiency of the new shaping method.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ph. Emplit, J.-P. Hamaide, F. Reynaud, C. Froehly, and A. Barthélémy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
    [Crossref]
  2. A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
    [Crossref] [PubMed]
  3. D. Krökel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
    [Crossref] [PubMed]
  4. A. M. Weiner, “Dark optical solitons,” in Optical Solitons—Theory and Experiment, J. R. Taylor, ed. (Cambridge U. Press, Cambridge, 1992).
  5. Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).
    [Crossref]
  6. W. Zhao and E. Bourkoff, “Generation, propagation, and amplification of dark solitons,” J. Opt. Soc. Am. B 9, 1134–1144 (1992).
    [Crossref]
  7. J. A. Giannini and R. I. Joseph, “The propagation of bright and dark solitons in lossy optical fibers,” IEEE J. Quantum Electron. 26, 2109–2114 (1990).
    [Crossref]
  8. M. Lisak, D. Anderson, and B. A. Malomed, “Dissipative damping of dark solitons in optical fibers,” Opt. Lett. 16, 1936–1937 (1991).
    [Crossref] [PubMed]
  9. J.-P. Hamaide, Ph. Emplit, and M. Haelterman, “Dark-soliton jitter in amplified optical transmission systems,” Opt. Lett. 16, 1578–1580 (1991).
    [Crossref] [PubMed]
  10. Y. S. Kivshar, M. Haelterman, Ph. Emplit, and J.-P. Hamaide, “Gordon–Haus limit for dark solitons,” Opt. Lett. 19, 19–21 (1994).
    [Crossref] [PubMed]
  11. H. Ikeda, M. Matsumoto, and A. Hasegawa, “Transmission control of dark solitons by means of nonlinear gain,” Opt. Lett. 20, 1113–1115 (1995); “Stabilization of dark-soliton transmission by means of nonlinear gain,” J. Opt. Soc. Am. B 14, 136–143 (1997).
    [Crossref] [PubMed]
  12. A. D. Kim, W. L. Kath, and C. G. Goedde, “Stabilizing dark solitons by periodic phase-sensitive amplification,” Opt. Lett. 21, 465–467 (1996).
    [Crossref] [PubMed]
  13. D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30, 1326–1327 (1994).
    [Crossref]
  14. M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a Mach–Zehnder interferometer,” Electron. Lett. 31, 1084–1085 (1995).
    [Crossref]
  15. M. Nakazawa and K. Suzuki, “10 Gbit/s pseudorandom dark soliton data transmission over 1200 km,” Electron. Lett. 31, 1076–1077 (1995).
    [Crossref]
  16. M. Haelterman and Ph. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29, 356–357 (1993).
    [Crossref]
  17. R. Kashyap, M. De Lathouwer, Ph Emplit, M. Haelterman, R. J. Campbell, and D. J. Armes, “Optical dark soliton generation using a fiber Bragg grating,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).
  18. R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fibre,” Int. J. Optoelectron. 9, 33–57 (1994).
  19. J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811–812 (1994).
    [Crossref]
  20. P. D. Miller, N. N. Akhmediev, and A. Ankiewicz, “Optical conveyor belts: a new scheme for fiber communications,” Opt. Lett. 21, 1132–1134 (1996).
    [Crossref] [PubMed]

1996 (2)

1995 (3)

H. Ikeda, M. Matsumoto, and A. Hasegawa, “Transmission control of dark solitons by means of nonlinear gain,” Opt. Lett. 20, 1113–1115 (1995); “Stabilization of dark-soliton transmission by means of nonlinear gain,” J. Opt. Soc. Am. B 14, 136–143 (1997).
[Crossref] [PubMed]

M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a Mach–Zehnder interferometer,” Electron. Lett. 31, 1084–1085 (1995).
[Crossref]

M. Nakazawa and K. Suzuki, “10 Gbit/s pseudorandom dark soliton data transmission over 1200 km,” Electron. Lett. 31, 1076–1077 (1995).
[Crossref]

1994 (4)

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30, 1326–1327 (1994).
[Crossref]

R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fibre,” Int. J. Optoelectron. 9, 33–57 (1994).

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811–812 (1994).
[Crossref]

Y. S. Kivshar, M. Haelterman, Ph. Emplit, and J.-P. Hamaide, “Gordon–Haus limit for dark solitons,” Opt. Lett. 19, 19–21 (1994).
[Crossref] [PubMed]

1993 (2)

Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).
[Crossref]

M. Haelterman and Ph. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29, 356–357 (1993).
[Crossref]

1992 (1)

1991 (2)

1990 (1)

J. A. Giannini and R. I. Joseph, “The propagation of bright and dark solitons in lossy optical fibers,” IEEE J. Quantum Electron. 26, 2109–2114 (1990).
[Crossref]

1988 (2)

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

D. Krökel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

1987 (1)

Ph. Emplit, J.-P. Hamaide, F. Reynaud, C. Froehly, and A. Barthélémy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Akhmediev, N. N.

Anderson, D.

Ankiewicz, A.

Armes, D. J.

R. Kashyap, M. De Lathouwer, Ph Emplit, M. Haelterman, R. J. Campbell, and D. J. Armes, “Optical dark soliton generation using a fiber Bragg grating,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Barthélémy, A.

Ph. Emplit, J.-P. Hamaide, F. Reynaud, C. Froehly, and A. Barthélémy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Bourkoff, E.

Campbell, R. J.

R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fibre,” Int. J. Optoelectron. 9, 33–57 (1994).

R. Kashyap, M. De Lathouwer, Ph Emplit, M. Haelterman, R. J. Campbell, and D. J. Armes, “Optical dark soliton generation using a fiber Bragg grating,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Chamberlin, R. P.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30, 1326–1327 (1994).
[Crossref]

De Lathouwer, M.

R. Kashyap, M. De Lathouwer, Ph Emplit, M. Haelterman, R. J. Campbell, and D. J. Armes, “Optical dark soliton generation using a fiber Bragg grating,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Dong, L.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30, 1326–1327 (1994).
[Crossref]

Emplit, Ph

R. Kashyap, M. De Lathouwer, Ph Emplit, M. Haelterman, R. J. Campbell, and D. J. Armes, “Optical dark soliton generation using a fiber Bragg grating,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Emplit, Ph.

Y. S. Kivshar, M. Haelterman, Ph. Emplit, and J.-P. Hamaide, “Gordon–Haus limit for dark solitons,” Opt. Lett. 19, 19–21 (1994).
[Crossref] [PubMed]

M. Haelterman and Ph. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29, 356–357 (1993).
[Crossref]

J.-P. Hamaide, Ph. Emplit, and M. Haelterman, “Dark-soliton jitter in amplified optical transmission systems,” Opt. Lett. 16, 1578–1580 (1991).
[Crossref] [PubMed]

Ph. Emplit, J.-P. Hamaide, F. Reynaud, C. Froehly, and A. Barthélémy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Froehly, C.

Ph. Emplit, J.-P. Hamaide, F. Reynaud, C. Froehly, and A. Barthélémy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Giannini, J. A.

J. A. Giannini and R. I. Joseph, “The propagation of bright and dark solitons in lossy optical fibers,” IEEE J. Quantum Electron. 26, 2109–2114 (1990).
[Crossref]

Giuliani, G.

D. Krökel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

Goedde, C. G.

Grischkowsky, D.

D. Krökel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

Haelterman, M.

Y. S. Kivshar, M. Haelterman, Ph. Emplit, and J.-P. Hamaide, “Gordon–Haus limit for dark solitons,” Opt. Lett. 19, 19–21 (1994).
[Crossref] [PubMed]

M. Haelterman and Ph. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29, 356–357 (1993).
[Crossref]

J.-P. Hamaide, Ph. Emplit, and M. Haelterman, “Dark-soliton jitter in amplified optical transmission systems,” Opt. Lett. 16, 1578–1580 (1991).
[Crossref] [PubMed]

R. Kashyap, M. De Lathouwer, Ph Emplit, M. Haelterman, R. J. Campbell, and D. J. Armes, “Optical dark soliton generation using a fiber Bragg grating,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Halas, N. J.

D. Krökel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

Hamaide, J.-P.

Hasegawa, A.

Hawkins, R. J.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Heritage, J. P.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Ikeda, H.

Joseph, R. I.

J. A. Giannini and R. I. Joseph, “The propagation of bright and dark solitons in lossy optical fibers,” IEEE J. Quantum Electron. 26, 2109–2114 (1990).
[Crossref]

Kashyap, R.

R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fibre,” Int. J. Optoelectron. 9, 33–57 (1994).

R. Kashyap, M. De Lathouwer, Ph Emplit, M. Haelterman, R. J. Campbell, and D. J. Armes, “Optical dark soliton generation using a fiber Bragg grating,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Kath, W. L.

Kim, A. D.

Kirschner, E. M.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Kivshar, Y. S.

Krökel, D.

D. Krökel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

Leaird, D. E.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Lisak, M.

Malomed, B. A.

Martin, J.

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811–812 (1994).
[Crossref]

Matsumoto, M.

Miller, P. D.

Nakazawa, M.

M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a Mach–Zehnder interferometer,” Electron. Lett. 31, 1084–1085 (1995).
[Crossref]

M. Nakazawa and K. Suzuki, “10 Gbit/s pseudorandom dark soliton data transmission over 1200 km,” Electron. Lett. 31, 1076–1077 (1995).
[Crossref]

Ouellette, F.

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811–812 (1994).
[Crossref]

Payne, D. N.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30, 1326–1327 (1994).
[Crossref]

Reynaud, F.

Ph. Emplit, J.-P. Hamaide, F. Reynaud, C. Froehly, and A. Barthélémy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Richardson, D. J.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30, 1326–1327 (1994).
[Crossref]

Suzuki, K.

M. Nakazawa and K. Suzuki, “10 Gbit/s pseudorandom dark soliton data transmission over 1200 km,” Electron. Lett. 31, 1076–1077 (1995).
[Crossref]

M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a Mach–Zehnder interferometer,” Electron. Lett. 31, 1084–1085 (1995).
[Crossref]

Thurston, R. N.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Tomlinson, W. J.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

Weiner, A. M.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

A. M. Weiner, “Dark optical solitons,” in Optical Solitons—Theory and Experiment, J. R. Taylor, ed. (Cambridge U. Press, Cambridge, 1992).

Zhao, W.

Electron. Lett. (5)

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30, 1326–1327 (1994).
[Crossref]

M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a Mach–Zehnder interferometer,” Electron. Lett. 31, 1084–1085 (1995).
[Crossref]

M. Nakazawa and K. Suzuki, “10 Gbit/s pseudorandom dark soliton data transmission over 1200 km,” Electron. Lett. 31, 1076–1077 (1995).
[Crossref]

M. Haelterman and Ph. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29, 356–357 (1993).
[Crossref]

J. Martin and F. Ouellette, “Novel writing technique of long and highly reflective in-fibre gratings,” Electron. Lett. 30, 811–812 (1994).
[Crossref]

IEEE J. Quantum Electron. (2)

Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993).
[Crossref]

J. A. Giannini and R. I. Joseph, “The propagation of bright and dark solitons in lossy optical fibers,” IEEE J. Quantum Electron. 26, 2109–2114 (1990).
[Crossref]

Int. J. Optoelectron. (1)

R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fibre,” Int. J. Optoelectron. 9, 33–57 (1994).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Ph. Emplit, J.-P. Hamaide, F. Reynaud, C. Froehly, and A. Barthélémy, “Picosecond steps and dark pulses through nonlinear single mode fibers,” Opt. Commun. 62, 374–379 (1987).
[Crossref]

Opt. Lett. (6)

Phys. Rev. Lett. (2)

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61, 2445–2448 (1988).
[Crossref] [PubMed]

D. Krökel, N. J. Halas, G. Giuliani, and D. Grischkowsky, “Dark-pulse propagation in optical fibers,” Phys. Rev. Lett. 60, 29–32 (1988).
[Crossref] [PubMed]

Other (2)

A. M. Weiner, “Dark optical solitons,” in Optical Solitons—Theory and Experiment, J. R. Taylor, ed. (Cambridge U. Press, Cambridge, 1992).

R. Kashyap, M. De Lathouwer, Ph Emplit, M. Haelterman, R. J. Campbell, and D. J. Armes, “Optical dark soliton generation using a fiber Bragg grating,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications, Vol. 22 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(a) Theoretical reflectivity spectrum and (b) reflection phase of a 30-mm-long fiber grating with κL=2.456. The points indicate the locations of the longitudinal modes of the mode-locked laser source.

Fig. 2
Fig. 2

Experimental reflectivity spectrum of a 30-mm-long fiber grating with κL=2.456. The points indicate the theoretical locations of the longitudinal modes of the mode-locked laser source (the exact locations of these modes in our experiment are not known).

Fig. 3
Fig. 3

Experimental setup. EFDA’s, erbium-doped-fiber amplifiers.

Fig. 4
Fig. 4

Synchroscan streak-camera measurements of (a) an extended-cavity mode-locked 6.1 GHz laser pulse train, (b) a shaped dark-soliton train.

Fig. 5
Fig. 5

Temporal intensity profile of the incident bright-pulse train measured with a fast photodetector and a sampling scope.

Fig. 6
Fig. 6

Spectrum of the bright-pulse train measured by a scanning Fabry–Perot analyzer.

Fig. 7
Fig. 7

Temporal intensity profile of the generated dark-pulse train.

Fig. 8
Fig. 8

Spectrum of the generated dark-pulse train.

Fig. 9
Fig. 9

Intensity profiles of the dark-pulse train. (a) The train at the input of the fiber; (b), (c) the trains at the output of the fiber for 15 and 50 mW of average input power, respectively.

Fig. 10
Fig. 10

Dark-pulse train calculated from the fit of the measured temporal profile and spectrum, (a) Temporal intensity profile, (b) spectrum, (c) phase profile, (d) spectral phase. The inset shows the experimental temporal profile.

Fig. 11
Fig. 11

Dark-pulse train calculated from the fit of the measured temporal profile only, the phase being considered to be constant. (a) Temporal intensity profile, (b) spectrum, (c) phase profile, (d) spectral phase. The spectrum in (b) is not compatible with the measured spectrum of Fig. 8 and shows therefore that the generation of even-symmetry dark pulses is unlikely.

Fig. 12
Fig. 12

Density plot showing the evolution of the intensity profile of an ideal tanh-shaped dark-pulse train in a lossy fiber with an initial average power of (a) 15 mW corresponding to the path-averaged soliton power and (b) 50 mW.

Fig. 13
Fig. 13

Calculated output intensity profiles of the ideal tanh pulses with two values of input power: (a) 15 mW, (b) 50 mW. The ripples on the background are due to the generation of pairs of gray solitons.

Fig. 14
Fig. 14

Density plot showing the evolution of the intensity profile of the generated dark-pulse train in the lossy fiber with initial average powers of (a) 15 mW and (b) 50 mW.

Fig. 15
Fig. 15

Calculated output intensity profiles of the shaped dark pulses with two values of input power: (a) 15 mW and (b) 50 mW. The intensity profiles have to be compared with experimental curves (b) and (c) of Fig. 9.

Fig. 16
Fig. 16

Density plot showing the evolution of the intensity profile of the dark-pulse train resulting from the fit with the flat phase constraint illustrated in Fig. 12. The input powers are (a) 15 mW and (b) 50 mW.

Fig. 17
Fig. 17

Output intensity profiles of the dark-pulse train with flat phase. The input powers are (a) (15) mW and (b) 50 mW.

Tables (1)

Tables Icon

Table 1 Intensities and Phases of the Frequency Components Used As Fitting Parameters to Calculate the Initial Field Envelope to Simulate the Experiment by Integration of the NLS Equationa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E(t)=n=-G(nν0)exp[-i2nπν0t)],
r=-κ/[κ2-δ2 coth(κ2-δ2L)-iδ],
A(t)=mam exp[i(ωnt+φm)],

Metrics