Abstract

The absolute scale of the second-order nonlinear-optical coefficients of several important nonlinear-optical materials has been obtained with improved accuracy. Second-harmonic generation, parametric fluorescence, and difference-frequency generation measurements have been made at several wavelengths in the near-infrared region. The second-harmonic generation measurement was performed at the fundamental wavelengths of 1.548, 1.533, 1.313, 1.064, and 0.852 µm. The materials measured included congruent LiNbO3, 1%MgO:LiNbO3, 5%MgO:LiNbO3, LiTaO3, KNbO3, KTiOPO4, KH2PO4, quartz, GaAs, GaP, α-ZnS, CdS, ZnSe, and CdTe. We made the parametric fluorescence measurement to determine the nonlinear-optical coefficients of congruent LiNbO3 and 5%MgO:LiNbO3 at pump wavelengths of 0.532 and 0.488 µm. We made the difference-frequency generation measurement for congruent LiNbO3 at a pump wavelength of 0.532 µm. The second-harmonic generation, parametric fluorescence, and difference-frequency generation measurements yielded consistent data on the nonlinear-optical coefficients of the materials. We found that many of the currently accepted standard values are overestimated because of neglect of the multiple-reflection effect in (nearly) plane-parallel-plate samples. The dispersion of the nonlinear-optical coefficients showed that Miller’s Δ is barely constant over the wavelength range measured and thus that Miller’s rule is not so good as other methods for wavelength scaling of the nonlinear-optical coefficients.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [CrossRef]
  2. R. C. Miller, W. A. Nordland, and P. M. Bridenbaugh, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
    [CrossRef]
  3. M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
    [CrossRef]
  4. H. Vanherzeele and J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
    [CrossRef] [PubMed]
  5. E. C. Cheung, K. Koch, G. T. Moore, and J. M. Liu, “Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence,” Opt. Lett. 19, 168–170 (1994).
    [CrossRef] [PubMed]
  6. J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux-grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004–2015 (1994).
    [CrossRef]
  7. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [CrossRef]
  8. P. J. Kupecek, C. A. Schwartz, and D. S. Chemla, “Silver thiogallate (AgGaS2). Part I. Nonlinear optical properties,” IEEE J. Quantum Electron. QE-10, 540–545 (1974).
    [CrossRef]
  9. P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
    [CrossRef]
  10. K. Hagimoto and A. Mito, “Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 and 1064 nm,” Appl. Opt. 34, 8276–8282 (1995).
    [CrossRef] [PubMed]
  11. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
    [CrossRef]
  12. S. K. Kurtz, J. Jerphagnon, and M. M. Choy, “Nonlinear dielectric susceptibilities,” in Landolt–Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, K.-H. Hellwege and A. M. Hellwege, eds. (Springer-Verlag, Berlin, 1979), Group III, Vol. 11, Chap. 6; updated edition (Springer-Verlag, Berlin, 1984), Vol. 18, Chap. S6.
  13. S. Singh, “Nonlinear optical materials,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC, Boca Raton, Fla., 1986), Vol. III, Part 1.
  14. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
    [CrossRef]
  15. R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988).
    [CrossRef]
  16. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
    [CrossRef]
  17. C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966).
    [CrossRef]
  18. C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators, and pyroelectricity,” IEEE J. Quantum Electron. QE-4, 70–84 (1968).
    [CrossRef]
  19. S. Scandolo and F. Bassani, “Miller’s rule and the static limit for second-harmonic generation,” Phys. Rev. B 51, 6928–6931 (1995).
    [CrossRef]
  20. A. Kitamoto, T. Kondo, I. Shoji, and R. Ito, “Absolute measurement of second-order nonlinear optical coefficient of LiNbO3 by parametric processes,” Opt. Rev. 2, 280–284 (1995).
    [CrossRef]
  21. G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
    [CrossRef]
  22. X. Cao, B. Rose, R. V. Ramaswamy, and R. Srivastava, “Efficient direct diode-laser frequency doubling in quasi-phase-matched LiNbO3 waveguides,” Opt. Lett. 17, 795–797 (1992).
    [CrossRef] [PubMed]
  23. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
    [CrossRef]
  24. M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
    [CrossRef]
  25. K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
    [CrossRef]
  26. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
    [CrossRef]
  27. D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, “Optical parametric oscillation in MgO:LiNbO3 driven by a diode pumped single frequency Q-switched laser,” IEEE Photon. Technol. Lett. 2, 15–17 (1990).
    [CrossRef]
  28. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
    [CrossRef]
  29. D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148, 302–312 (1966).
    [CrossRef]
  30. R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169–171 (1966).
    [CrossRef]
  31. R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
    [CrossRef]
  32. J. E. Bjorkholm, “Relative measurement of the optical nonlinearities of KDP, ADP, LiNbO3, and α-HIO3,” IEEE J. Quantum Electron. QE-4, 970–972 (1968); J. E. Bjorkholm, “Correction to ‘Relative measurement of the optical nonlinearities of KDP, ADP, LiNbO3, and α-HIO3, ’ ” IEEE J. Quantum Electron. QE-5, 260 (1969).
    [CrossRef]
  33. W. F. Hagen and P. C. Magnante, “Efficient second-harmonic generation with diffraction-limited and high-spectral-radiance Nd-glass lasers,” J. Appl. Phys. 40, 219–224 (1969).
    [CrossRef]
  34. B. F. Levine and C. G. Bethea, “Nonlinear susceptibility of GaP; relative measurement and use of measured values to determine a better absolute value,” Appl. Phys. Lett. 20, 272–275 (1972).
    [CrossRef]
  35. G. D. Boyd, H. Kasper, and J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
    [CrossRef]
  36. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  37. T. Furuse and I. Sakuma, “Internal second harmonic generation in InGaAsP DH lasers,” Opt. Commun. 35, 413–416 (1980).
    [CrossRef]
  38. N. Ogasawara, R. Ito, H. Rokukawa, and W. Katsurashima, “Second harmonic generation in an AlGaAs double-heterostructure laser,” Jpn. J. Appl. Phys. 26, 1386–1387 (1987).
    [CrossRef]
  39. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
    [CrossRef]
  40. P. S. Bechthold and S. Haussühl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
    [CrossRef]
  41. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12, 416–427 (1995).
    [CrossRef]
  42. P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
    [CrossRef]
  43. See, for example, R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).
  44. G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
    [CrossRef]
  45. D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972).
  46. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
    [CrossRef]
  47. B. Zysset, I. Biaggio, and P. Günter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
    [CrossRef]
  48. J. D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
    [CrossRef]
  49. D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys. 35, 1241–1242 (1964).
    [CrossRef]
  50. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
    [CrossRef]
  51. D. F. Nelson and E. H. Turner, “Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide,” J. Appl. Phys. 39, 3337–3343 (1968).
    [CrossRef]
  52. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
    [CrossRef]
  53. T. M. Bieniewski and S. J. Czyzak, “Refractive indexes of single hexagonal ZnS and CdS crystals,” J. Opt. Soc. Am. 53, 496–497 (1963).
    [CrossRef]
  54. D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35, 539–542 (1964).
    [CrossRef]
  55. S. Ozaki and S. Adachi, “Optical constants of ZnSexTe1−x ternary alloys,” Jpn. J. Appl. Phys. 32, 2620–2625 (1993).
    [CrossRef]
  56. Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992).
    [CrossRef]
  57. S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
    [CrossRef]
  58. R. S. Craxton, “High efficiency frequency tripling schemes for high-power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981).
    [CrossRef]
  59. D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
    [CrossRef]
  60. J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970).
    [CrossRef]
  61. J.-C. Baumert, J. Hoffnagle, and P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Balger and H. A. Ferwerde, eds., Proc. SPIE 492, 374–385 (1984).
    [CrossRef]
  62. Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
    [CrossRef]
  63. T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995).
    [CrossRef]
  64. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390–2394 (1987).
    [CrossRef] [PubMed]
  65. D. W. Anthon and C. D. Crowder, “Wavelength dependent phase matching in KTP,” Appl. Opt. 27, 2650–2652 (1988).
    [CrossRef] [PubMed]
  66. K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
    [CrossRef]
  67. T. Kishimoto and M. Itoh, “Physical and nonlinear properties of ferroelectric KTiOPO4,” Solid State Phys. (Japan) 25, 597–608 (1990).
  68. B. Boulanger, J. P. Fève, G. Marnier, B. Ménaert, X. Cabirol, P. Villeval, and C. Bonnin, “Relative sign and absolute magnitude of d(2) nonlinear coefficients of KTP from second-harmonic-generation measurements,” J. Opt. Soc. Am. B 11, 750–757 (1994).
    [CrossRef]
  69. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
    [CrossRef]
  70. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
    [CrossRef] [PubMed]
  71. R. J. Bolt and M. van der Mooren, “Single shot bulk damagethreshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100, 399–410 (1993).
    [CrossRef]
  72. R. A. Soref and H. W. Moos, “Optical second-harmonic generation in ZnS–CdS and CdS–CdSe alloys,” J. Appl. Phys. 35, 2152–2158 (1964).
    [CrossRef]
  73. R. K. Chang, J. Ducuing, and N. Bloembergen, “Dispersion of the optical nonlinearity in semiconductors,” Phys. Rev. Lett. 15, 415–418 (1965).
    [CrossRef]
  74. W. D. Johnston, Jr., and I. P. Kaminow, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188, 1209–1211 (1969).
    [CrossRef]
  75. W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11, 339–341 (1959).
    [CrossRef]
  76. R. C. Miller, D. A. Kleinman, and A. Savage, “Quantitative studies of optical harmonic generation in CdS, BaTiO3, and KH2PO4 type crystals,” Phys. Rev. Lett. 11, 146–149 (1963).
    [CrossRef]

1995 (5)

S. Scandolo and F. Bassani, “Miller’s rule and the static limit for second-harmonic generation,” Phys. Rev. B 51, 6928–6931 (1995).
[CrossRef]

A. Kitamoto, T. Kondo, I. Shoji, and R. Ito, “Absolute measurement of second-order nonlinear optical coefficient of LiNbO3 by parametric processes,” Opt. Rev. 2, 280–284 (1995).
[CrossRef]

T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995).
[CrossRef]

W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12, 416–427 (1995).
[CrossRef]

K. Hagimoto and A. Mito, “Determination of the second-order susceptibility of ammonium dihydrogen phosphate and α-quartz at 633 and 1064 nm,” Appl. Opt. 34, 8276–8282 (1995).
[CrossRef] [PubMed]

1994 (4)

1993 (4)

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

R. J. Bolt and M. van der Mooren, “Single shot bulk damagethreshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100, 399–410 (1993).
[CrossRef]

S. Ozaki and S. Adachi, “Optical constants of ZnSexTe1−x ternary alloys,” Jpn. J. Appl. Phys. 32, 2620–2625 (1993).
[CrossRef]

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
[CrossRef]

1992 (8)

Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992).
[CrossRef]

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 28–30 (1992).
[CrossRef] [PubMed]

X. Cao, B. Rose, R. V. Ramaswamy, and R. Srivastava, “Efficient direct diode-laser frequency doubling in quasi-phase-matched LiNbO3 waveguides,” Opt. Lett. 17, 795–797 (1992).
[CrossRef] [PubMed]

H. Vanherzeele and J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4,” Opt. Lett. 17, 982–984 (1992).
[CrossRef] [PubMed]

P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
[CrossRef]

B. Zysset, I. Biaggio, and P. Günter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

1991 (2)

K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
[CrossRef]

K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[CrossRef]

1990 (3)

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, “Optical parametric oscillation in MgO:LiNbO3 driven by a diode pumped single frequency Q-switched laser,” IEEE Photon. Technol. Lett. 2, 15–17 (1990).
[CrossRef]

1989 (1)

1988 (3)

D. W. Anthon and C. D. Crowder, “Wavelength dependent phase matching in KTP,” Appl. Opt. 27, 2650–2652 (1988).
[CrossRef] [PubMed]

R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

1987 (3)

N. Ogasawara, R. Ito, H. Rokukawa, and W. Katsurashima, “Second harmonic generation in an AlGaAs double-heterostructure laser,” Jpn. J. Appl. Phys. 26, 1386–1387 (1987).
[CrossRef]

T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390–2394 (1987).
[CrossRef] [PubMed]

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
[CrossRef]

1986 (1)

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

1984 (2)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

J.-C. Baumert, J. Hoffnagle, and P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Balger and H. A. Ferwerde, eds., Proc. SPIE 492, 374–385 (1984).
[CrossRef]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

1982 (1)

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
[CrossRef]

1981 (1)

R. S. Craxton, “High efficiency frequency tripling schemes for high-power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981).
[CrossRef]

1980 (1)

T. Furuse and I. Sakuma, “Internal second harmonic generation in InGaAsP DH lasers,” Opt. Commun. 35, 413–416 (1980).
[CrossRef]

1977 (1)

P. S. Bechthold and S. Haussühl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

1976 (2)

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

1974 (2)

P. J. Kupecek, C. A. Schwartz, and D. S. Chemla, “Silver thiogallate (AgGaS2). Part I. Nonlinear optical properties,” IEEE J. Quantum Electron. QE-10, 540–545 (1974).
[CrossRef]

Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
[CrossRef]

1972 (1)

B. F. Levine and C. G. Bethea, “Nonlinear susceptibility of GaP; relative measurement and use of measured values to determine a better absolute value,” Appl. Phys. Lett. 20, 272–275 (1972).
[CrossRef]

1971 (2)

G. D. Boyd, H. Kasper, and J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

R. C. Miller, W. A. Nordland, and P. M. Bridenbaugh, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
[CrossRef]

1970 (2)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970).
[CrossRef]

1969 (2)

W. D. Johnston, Jr., and I. P. Kaminow, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188, 1209–1211 (1969).
[CrossRef]

W. F. Hagen and P. C. Magnante, “Efficient second-harmonic generation with diffraction-limited and high-spectral-radiance Nd-glass lasers,” J. Appl. Phys. 40, 219–224 (1969).
[CrossRef]

1968 (3)

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

D. F. Nelson and E. H. Turner, “Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide,” J. Appl. Phys. 39, 3337–3343 (1968).
[CrossRef]

C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators, and pyroelectricity,” IEEE J. Quantum Electron. QE-4, 70–84 (1968).
[CrossRef]

1966 (3)

C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966).
[CrossRef]

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148, 302–312 (1966).
[CrossRef]

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169–171 (1966).
[CrossRef]

1965 (2)

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[CrossRef]

R. K. Chang, J. Ducuing, and N. Bloembergen, “Dispersion of the optical nonlinearity in semiconductors,” Phys. Rev. Lett. 15, 415–418 (1965).
[CrossRef]

1964 (5)

R. A. Soref and H. W. Moos, “Optical second-harmonic generation in ZnS–CdS and CdS–CdSe alloys,” J. Appl. Phys. 35, 2152–2158 (1964).
[CrossRef]

D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35, 539–542 (1964).
[CrossRef]

D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys. 35, 1241–1242 (1964).
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

1963 (2)

R. C. Miller, D. A. Kleinman, and A. Savage, “Quantitative studies of optical harmonic generation in CdS, BaTiO3, and KH2PO4 type crystals,” Phys. Rev. Lett. 11, 146–149 (1963).
[CrossRef]

T. M. Bieniewski and S. J. Czyzak, “Refractive indexes of single hexagonal ZnS and CdS crystals,” J. Opt. Soc. Am. 53, 496–497 (1963).
[CrossRef]

1962 (1)

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

1959 (1)

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11, 339–341 (1959).
[CrossRef]

Abed, M.

Adachi, S.

S. Ozaki and S. Adachi, “Optical constants of ZnSexTe1−x ternary alloys,” Jpn. J. Appl. Phys. 32, 2620–2625 (1993).
[CrossRef]

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
[CrossRef]

Anthon, D. W.

Aspnes, D. E.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Bassani, F.

S. Scandolo and F. Bassani, “Miller’s rule and the static limit for second-harmonic generation,” Phys. Rev. B 51, 6928–6931 (1995).
[CrossRef]

Baumert, J.-C.

J.-C. Baumert, J. Hoffnagle, and P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Balger and H. A. Ferwerde, eds., Proc. SPIE 492, 374–385 (1984).
[CrossRef]

Bechthold, P. S.

P. S. Bechthold and S. Haussühl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

Benko, Z.

P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Bethea, C. G.

B. F. Levine and C. G. Bethea, “Nonlinear susceptibility of GaP; relative measurement and use of measured values to determine a better absolute value,” Appl. Phys. Lett. 20, 272–275 (1972).
[CrossRef]

Bhar, G. C.

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
[CrossRef]

Bhat, R.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Biaggio, I.

Bieniewski, T. M.

Bierlein, J. D.

Bloembergen, N.

R. K. Chang, J. Ducuing, and N. Bloembergen, “Dispersion of the optical nonlinearity in semiconductors,” Phys. Rev. Lett. 15, 415–418 (1965).
[CrossRef]

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

Bolt, R. J.

R. J. Bolt and M. van der Mooren, “Single shot bulk damagethreshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100, 399–410 (1993).
[CrossRef]

Bond, W. L.

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

Bonnin, C.

Bortz, M. L.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Boulanger, B.

Boyd, G. D.

G. D. Boyd, H. Kasper, and J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

Bridenbaugh, P. M.

R. C. Miller, W. A. Nordland, and P. M. Bridenbaugh, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
[CrossRef]

Buchal, C.

T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995).
[CrossRef]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390–2394 (1987).
[CrossRef] [PubMed]

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

Cabirol, X.

Canarelli, P.

P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Cao, X.

Chang, R. K.

R. K. Chang, J. Ducuing, and N. Bloembergen, “Dispersion of the optical nonlinearity in semiconductors,” Phys. Rev. Lett. 15, 415–418 (1965).
[CrossRef]

Chemla, D. S.

P. J. Kupecek, C. A. Schwartz, and D. S. Chemla, “Silver thiogallate (AgGaS2). Part I. Nonlinear optical properties,” IEEE J. Quantum Electron. QE-10, 540–545 (1974).
[CrossRef]

Cheung, E. C.

Choy, M. M.

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

Clairon, A.

Craxton, R. S.

R. S. Craxton, “High efficiency frequency tripling schemes for high-power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981).
[CrossRef]

Crowder, C. D.

Curl, R.

Curl, R. F.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Czyzak, S. J.

DeSalvo, R.

Ducuing, J.

R. K. Chang, J. Ducuing, and N. Bloembergen, “Dispersion of the optical nonlinearity in semiconductors,” Phys. Rev. Lett. 15, 415–418 (1965).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390–2394 (1987).
[CrossRef] [PubMed]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Eimerl, D.

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
[CrossRef]

Fan, T. Y.

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390–2394 (1987).
[CrossRef] [PubMed]

Feigelson, R. S.

Fejer, M. M.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

Fève, J. P.

Field, S. J.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Fleuster, M.

T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995).
[CrossRef]

Fluck, D.

T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Frosch, C. J.

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11, 339–341 (1959).
[CrossRef]

Furuse, T.

T. Furuse and I. Sakuma, “Internal second harmonic generation in InGaAsP DH lasers,” Opt. Commun. 35, 413–416 (1980).
[CrossRef]

Garrett, C. G. B.

C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators, and pyroelectricity,” IEEE J. Quantum Electron. QE-4, 70–84 (1968).
[CrossRef]

C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966).
[CrossRef]

Gershenzon, M.

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11, 339–341 (1959).
[CrossRef]

Gerstenberger, D. C.

D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, “Optical parametric oscillation in MgO:LiNbO3 driven by a diode pumped single frequency Q-switched laser,” IEEE Photon. Technol. Lett. 2, 15–17 (1990).
[CrossRef]

Ghosh, G. C.

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
[CrossRef]

Gibbs, D. F.

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11, 339–341 (1959).
[CrossRef]

Gier, T. E.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Günter, P.

T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995).
[CrossRef]

B. Zysset, I. Biaggio, and P. Günter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
[CrossRef]

J.-C. Baumert, J. Hoffnagle, and P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Balger and H. A. Ferwerde, eds., Proc. SPIE 492, 374–385 (1984).
[CrossRef]

Hagan, D. J.

Hagen, W. F.

W. F. Hagen and P. C. Magnante, “Efficient second-harmonic generation with diffraction-limited and high-spectral-radiance Nd-glass lasers,” J. Appl. Phys. 40, 219–224 (1969).
[CrossRef]

Hagimoto, K.

Harris, S. E.

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

Hase, Y.

Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992).
[CrossRef]

Haussühl, S.

P. S. Bechthold and S. Haussühl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

Hayden, L. M.

Herman, W. N.

Hielscher, A. H.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Hoffnagle, J.

J.-C. Baumert, J. Hoffnagle, and P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Balger and H. A. Ferwerde, eds., Proc. SPIE 492, 374–385 (1984).
[CrossRef]

Hu, B. Q.

Huang, C. E.

Ito, R.

A. Kitamoto, T. Kondo, I. Shoji, and R. Ito, “Absolute measurement of second-order nonlinear optical coefficient of LiNbO3 by parametric processes,” Opt. Rev. 2, 280–284 (1995).
[CrossRef]

Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992).
[CrossRef]

R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988).
[CrossRef]

N. Ogasawara, R. Ito, H. Rokukawa, and W. Katsurashima, “Second harmonic generation in an AlGaAs double-heterostructure laser,” Jpn. J. Appl. Phys. 26, 1386–1387 (1987).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970).
[CrossRef]

Johnston , Jr., W. D.

W. D. Johnston, Jr., and I. P. Kaminow, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188, 1209–1211 (1969).
[CrossRef]

Jundt, D. H.

T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995).
[CrossRef]

Kaminow, I. P.

W. D. Johnston, Jr., and I. P. Kaminow, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188, 1209–1211 (1969).
[CrossRef]

Kaneda, Y.

R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988).
[CrossRef]

Kano, S. S.

Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992).
[CrossRef]

Kasper, H.

G. D. Boyd, H. Kasper, and J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

Kato, K.

K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[CrossRef]

Katsurashima, W.

N. Ogasawara, R. Ito, H. Rokukawa, and W. Katsurashima, “Second harmonic generation in an AlGaAs double-heterostructure laser,” Jpn. J. Appl. Phys. 26, 1386–1387 (1987).
[CrossRef]

Kawahara, M.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Kelso, S. M.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Kimura, T.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
[CrossRef]

Kitamoto, A.

A. Kitamoto, T. Kondo, I. Shoji, and R. Ito, “Absolute measurement of second-order nonlinear optical coefficient of LiNbO3 by parametric processes,” Opt. Rev. 2, 280–284 (1995).
[CrossRef]

Kleinman, D. A.

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148, 302–312 (1966).
[CrossRef]

R. C. Miller, D. A. Kleinman, and A. Savage, “Quantitative studies of optical harmonic generation in CdS, BaTiO3, and KH2PO4 type crystals,” Phys. Rev. Lett. 11, 146–149 (1963).
[CrossRef]

Koch, K.

Kondo, T.

A. Kitamoto, T. Kondo, I. Shoji, and R. Ito, “Absolute measurement of second-order nonlinear optical coefficient of LiNbO3 by parametric processes,” Opt. Rev. 2, 280–284 (1995).
[CrossRef]

Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992).
[CrossRef]

R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988).
[CrossRef]

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Kumata, K.

Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992).
[CrossRef]

Kupecek, P. J.

P. J. Kupecek, C. A. Schwartz, and D. S. Chemla, “Silver thiogallate (AgGaS2). Part I. Nonlinear optical properties,” IEEE J. Quantum Electron. QE-10, 540–545 (1974).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Levine, B. F.

B. F. Levine and C. G. Bethea, “Nonlinear susceptibility of GaP; relative measurement and use of measured values to determine a better absolute value,” Appl. Phys. Lett. 20, 272–275 (1972).
[CrossRef]

Liu, J. M.

Logan, R. A.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Magel, G. A.

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

Magnante, P. C.

W. F. Hagen and P. C. Magnante, “Efficient second-harmonic generation with diffraction-limited and high-spectral-radiance Nd-glass lasers,” J. Appl. Phys. 40, 219–224 (1969).
[CrossRef]

Marnier, G.

Marple, D. T. F.

D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys. 35, 1241–1242 (1964).
[CrossRef]

D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35, 539–542 (1964).
[CrossRef]

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Mcfee, J. H.

G. D. Boyd, H. Kasper, and J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

Ménaert, B.

Miller, R. C.

R. C. Miller, W. A. Nordland, and P. M. Bridenbaugh, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
[CrossRef]

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148, 302–312 (1966).
[CrossRef]

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169–171 (1966).
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

R. C. Miller, D. A. Kleinman, and A. Savage, “Quantitative studies of optical harmonic generation in CdS, BaTiO3, and KH2PO4 type crystals,” Phys. Rev. Lett. 11, 146–149 (1963).
[CrossRef]

Mito, A.

Moore, G. T.

Moos, H. W.

R. A. Soref and H. W. Moos, “Optical second-harmonic generation in ZnS–CdS and CdS–CdSe alloys,” J. Appl. Phys. 35, 2152–2158 (1964).
[CrossRef]

Morita, R.

R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988).
[CrossRef]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Nam, D. W.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Nassau, K.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

Nelson, D. F.

D. F. Nelson and E. H. Turner, “Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide,” J. Appl. Phys. 39, 3337–3343 (1968).
[CrossRef]

Nordland, W. A.

R. C. Miller, W. A. Nordland, and P. M. Bridenbaugh, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
[CrossRef]

Ogasawara, N.

R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988).
[CrossRef]

N. Ogasawara, R. Ito, H. Rokukawa, and W. Katsurashima, “Second harmonic generation in an AlGaAs double-heterostructure laser,” Jpn. J. Appl. Phys. 26, 1386–1387 (1987).
[CrossRef]

Ohashi, M.

Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992).
[CrossRef]

Okayama, H.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Ozaki, S.

S. Ozaki and S. Adachi, “Optical constants of ZnSexTe1−x ternary alloys,” Jpn. J. Appl. Phys. 32, 2620–2625 (1993).
[CrossRef]

Pershan, P. S.

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Pliska, T.

T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995).
[CrossRef]

Ramaswamy, R. V.

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Robinson, F. N. H.

C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966).
[CrossRef]

Rokukawa, H.

N. Ogasawara, R. Ito, H. Rokukawa, and W. Katsurashima, “Second harmonic generation in an AlGaAs double-heterostructure laser,” Jpn. J. Appl. Phys. 26, 1386–1387 (1987).
[CrossRef]

Rose, B.

Rytz, D.

T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995).
[CrossRef]

Sakuma, I.

T. Furuse and I. Sakuma, “Internal second harmonic generation in InGaAsP DH lasers,” Opt. Commun. 35, 413–416 (1980).
[CrossRef]

Savage, A.

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169–171 (1966).
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

R. C. Miller, D. A. Kleinman, and A. Savage, “Quantitative studies of optical harmonic generation in CdS, BaTiO3, and KH2PO4 type crystals,” Phys. Rev. Lett. 11, 146–149 (1963).
[CrossRef]

Scandolo, S.

S. Scandolo and F. Bassani, “Miller’s rule and the static limit for second-harmonic generation,” Phys. Rev. B 51, 6928–6931 (1995).
[CrossRef]

Schwartz, C. A.

P. J. Kupecek, C. A. Schwartz, and D. S. Chemla, “Silver thiogallate (AgGaS2). Part I. Nonlinear optical properties,” IEEE J. Quantum Electron. QE-10, 540–545 (1974).
[CrossRef]

Sheik-Bahae, M.

Shinozaki, K.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Shiraki, Y.

Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992).
[CrossRef]

Shoji, I.

A. Kitamoto, T. Kondo, I. Shoji, and R. Ito, “Absolute measurement of second-order nonlinear optical coefficient of LiNbO3 by parametric processes,” Opt. Rev. 2, 280–284 (1995).
[CrossRef]

Soref, R. A.

R. A. Soref and H. W. Moos, “Optical second-harmonic generation in ZnS–CdS and CdS–CdSe alloys,” J. Appl. Phys. 35, 2152–2158 (1964).
[CrossRef]

Spitzer, W. G.

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11, 339–341 (1959).
[CrossRef]

Srivastava, R.

Stegeman, G.

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Sugihashi, A.

R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988).
[CrossRef]

Suzuki, N.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
[CrossRef]

Taniuchi, T.

K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
[CrossRef]

Tittel, F. K.

P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

Turner, E. H.

D. F. Nelson and E. H. Turner, “Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide,” J. Appl. Phys. 39, 3337–3343 (1968).
[CrossRef]

Tye, G. E.

D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, “Optical parametric oscillation in MgO:LiNbO3 driven by a diode pumped single frequency Q-switched laser,” IEEE Photon. Technol. Lett. 2, 15–17 (1990).
[CrossRef]

Uematsu, Y.

Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
[CrossRef]

Umegaki, S.

R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988).
[CrossRef]

van der Mooren, M.

R. J. Bolt and M. van der Mooren, “Single shot bulk damagethreshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100, 399–410 (1993).
[CrossRef]

Van Stryland, E. W.

Vanherzeele, H.

Villeval, P.

Waarts, R. G.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Wallace, R. W.

D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, “Optical parametric oscillation in MgO:LiNbO3 driven by a diode pumped single frequency Q-switched laser,” IEEE Photon. Technol. Lett. 2, 15–17 (1990).
[CrossRef]

Watanabe, K.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Welch, D. F.

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

Xu, C. Q.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Yamamoto, H.

K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
[CrossRef]

Yamamoto, K.

K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
[CrossRef]

Zondy, J.-J.

Zumsteg, F. C.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Zysset, B.

Appl. Opt. (3)

Appl. Phys. (1)

P. S. Bechthold and S. Haussühl, “Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

Appl. Phys. Lett. (8)

K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169–171 (1966).
[CrossRef]

B. F. Levine and C. G. Bethea, “Nonlinear susceptibility of GaP; relative measurement and use of measured values to determine a better absolute value,” Appl. Phys. Lett. 20, 272–275 (1972).
[CrossRef]

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5, 17–19 (1964).
[CrossRef]

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63, 1170–1172 (1993).
[CrossRef]

Y. Hase, K. Kumata, S. S. Kano, M. Ohashi, T. Kondo, R. Ito, and Y. Shiraki, “New method for determining the nonlinear optical coefficients of thin films,” Appl. Phys. Lett. 61, 145–146 (1992).
[CrossRef]

Ferroelectrics (1)

D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987).
[CrossRef]

IEEE J. Quantum Electron. (12)

R. S. Craxton, “High efficiency frequency tripling schemes for high-power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981).
[CrossRef]

K. Kato, “Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm,” IEEE J. Quantum Electron. 27, 1137–1140 (1991).
[CrossRef]

M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts, and D. F. Welch, “Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide,” IEEE J. Quantum Electron. 30, 2953–2960 (1994).
[CrossRef]

C. G. B. Garrett and F. N. H. Robinson, “Miller’s phenomenological rule for computing nonlinear susceptibilities,” IEEE J. Quantum Electron. QE-2, 328–329 (1966).
[CrossRef]

C. G. B. Garrett, “Nonlinear optics, anharmonic oscillators, and pyroelectricity,” IEEE J. Quantum Electron. QE-4, 70–84 (1968).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

P. J. Kupecek, C. A. Schwartz, and D. S. Chemla, “Silver thiogallate (AgGaS2). Part I. Nonlinear optical properties,” IEEE J. Quantum Electron. QE-10, 540–545 (1974).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52–55 (1992).
[CrossRef]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

G. D. Boyd, H. Kasper, and J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. C. Gerstenberger, G. E. Tye, and R. W. Wallace, “Optical parametric oscillation in MgO:LiNbO3 driven by a diode pumped single frequency Q-switched laser,” IEEE Photon. Technol. Lett. 2, 15–17 (1990).
[CrossRef]

J. Appl. Phys. (12)

W. F. Hagen and P. C. Magnante, “Efficient second-harmonic generation with diffraction-limited and high-spectral-radiance Nd-glass lasers,” J. Appl. Phys. 40, 219–224 (1969).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

R. C. Miller, W. A. Nordland, and P. M. Bridenbaugh, “Dependence of second-harmonic-generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
[CrossRef]

T. Pliska, D. H. Jundt, D. Fluck, P. Günter, D. Rytz, M. Fleuster, and C. Buchal, “Low-temperature annealing of ion-implanted KNbO3 waveguides for second-harmonic generation,” J. Appl. Phys. 77, 6114–6120 (1995).
[CrossRef]

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435–3441 (1993).
[CrossRef]

D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35, 539–542 (1964).
[CrossRef]

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[CrossRef]

D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys. 35, 1241–1242 (1964).
[CrossRef]

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

D. F. Nelson and E. H. Turner, “Electro-optic and piezoelectric coefficients and refractive index of gallium phosphide,” J. Appl. Phys. 39, 3337–3343 (1968).
[CrossRef]

R. A. Soref and H. W. Moos, “Optical second-harmonic generation in ZnS–CdS and CdS–CdSe alloys,” J. Appl. Phys. 35, 2152–2158 (1964).
[CrossRef]

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (6)

J. Phys. Chem. Solids (1)

W. G. Spitzer, M. Gershenzon, C. J. Frosch, and D. F. Gibbs, “Optical absorption in n-type gallium phosphide,” J. Phys. Chem. Solids 11, 339–341 (1959).
[CrossRef]

Jpn. J. Appl. Phys. (4)

S. Ozaki and S. Adachi, “Optical constants of ZnSexTe1−x ternary alloys,” Jpn. J. Appl. Phys. 32, 2620–2625 (1993).
[CrossRef]

Y. Uematsu, “Nonlinear optical properties of KNbO3 single crystal in the orthorhombic phase,” Jpn. J. Appl. Phys. 13, 1362–1368 (1974).
[CrossRef]

R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, and R. Ito, “Multiple-reflection effects in optical second-harmonic generation,” Jpn. J. Appl. Phys. 27, L1134–L1136 (1988).
[CrossRef]

N. Ogasawara, R. Ito, H. Rokukawa, and W. Katsurashima, “Second harmonic generation in an AlGaAs double-heterostructure laser,” Jpn. J. Appl. Phys. 26, 1386–1387 (1987).
[CrossRef]

Opt. Commun. (2)

T. Furuse and I. Sakuma, “Internal second harmonic generation in InGaAsP DH lasers,” Opt. Commun. 35, 413–416 (1980).
[CrossRef]

R. J. Bolt and M. van der Mooren, “Single shot bulk damagethreshold and conversion efficiency measurements on flux grown KTiOPO4 (KTP),” Opt. Commun. 100, 399–410 (1993).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Opt. Rev. (1)

A. Kitamoto, T. Kondo, I. Shoji, and R. Ito, “Absolute measurement of second-order nonlinear optical coefficient of LiNbO3 by parametric processes,” Opt. Rev. 2, 280–284 (1995).
[CrossRef]

Phys. Rev. (4)

N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

R. L. Byer and S. E. Harris, “Power and bandwidth of spontaneous parametric emission,” Phys. Rev. 168, 1064–1068 (1968).
[CrossRef]

D. A. Kleinman and R. C. Miller, “Dependence of second-harmonic generation on the position of the focus,” Phys. Rev. 148, 302–312 (1966).
[CrossRef]

W. D. Johnston, Jr., and I. P. Kaminow, “Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies,” Phys. Rev. 188, 1209–1211 (1969).
[CrossRef]

Phys. Rev. B (4)

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B 14, 1693–1706 (1976).
[CrossRef]

S. Scandolo and F. Bassani, “Miller’s rule and the static limit for second-harmonic generation,” Phys. Rev. B 51, 6928–6931 (1995).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985–1009 (1983).
[CrossRef]

Phys. Rev. Lett. (3)

R. C. Miller, D. A. Kleinman, and A. Savage, “Quantitative studies of optical harmonic generation in CdS, BaTiO3, and KH2PO4 type crystals,” Phys. Rev. Lett. 11, 146–149 (1963).
[CrossRef]

R. K. Chang, J. Ducuing, and N. Bloembergen, “Dispersion of the optical nonlinearity in semiconductors,” Phys. Rev. Lett. 15, 415–418 (1965).
[CrossRef]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Proc. SPIE (1)

J.-C. Baumert, J. Hoffnagle, and P. Günter, “Nonlinear optical effects in KNbO3 crystals at AlxGa1−xAs, dye, ruby and Nd:YAG laser wavelengths,” in 1984 European Conference on Optics, Optical Systems, and Applications, B. Balger and H. A. Ferwerde, eds., Proc. SPIE 492, 374–385 (1984).
[CrossRef]

Other (6)

T. Kishimoto and M. Itoh, “Physical and nonlinear properties of ferroelectric KTiOPO4,” Solid State Phys. (Japan) 25, 597–608 (1990).

S. K. Kurtz, J. Jerphagnon, and M. M. Choy, “Nonlinear dielectric susceptibilities,” in Landolt–Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, K.-H. Hellwege and A. M. Hellwege, eds. (Springer-Verlag, Berlin, 1979), Group III, Vol. 11, Chap. 6; updated edition (Springer-Verlag, Berlin, 1984), Vol. 18, Chap. S6.

S. Singh, “Nonlinear optical materials,” in Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC, Boca Raton, Fla., 1986), Vol. III, Part 1.

J. E. Bjorkholm, “Relative measurement of the optical nonlinearities of KDP, ADP, LiNbO3, and α-HIO3,” IEEE J. Quantum Electron. QE-4, 970–972 (1968); J. E. Bjorkholm, “Correction to ‘Relative measurement of the optical nonlinearities of KDP, ADP, LiNbO3, and α-HIO3, ’ ” IEEE J. Quantum Electron. QE-5, 260 (1969).
[CrossRef]

D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972).

See, for example, R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1
Fig. 1

Schematic of the experimental setup for absolute measurement by the wedge technique: LD, laser diode; PMT, photomultiplier tube.

Fig. 2
Fig. 2

Typical fundamental beam profile at the beam waist. The open squares are experimental data, and the solid curve shows the fitted curve for Gaussian distribution.

Fig. 3
Fig. 3

Sample thickness versus the SH power for d33 (congruent LiNbO3) of the Toshiba wedge sample at a fundamental wavelength of 1.313 µm. (b) Part of (a) around one of the Maker-fringe peaks plotted on an expanded horizontal scale. The fundamental power was 4.30 mW, and the fundamental beam radii wx and wy were 20.81 and 24.35 µm, respectively. The open squares are experimental data, and the solid curve shows the theoretical fitting curve with Eq. (2).

Fig. 4
Fig. 4

Sample thickness versus the SH power for d33 (congruent LiNbO3) of the AR-coated wedge sample at a fundamental wavelength of 1.313 µm. The fundamental power was 2.71 mW, and the fundamental beam radii wx and wy were 19.51 and 22.67 µm, respectively. The open squares are experimental data, and the solid curve shows the theoretical fitting curve with Eq. (4).

Fig. 5
Fig. 5

Schematic of the experimental setup for relative measurement with a Q-switched Nd:YAG laser as the fundamental light source: ND, neutral-density; PMT, photomultiplier tube.

Fig. 6
Fig. 6

Rotation angle versus the SH power for d33 (congruent LiNbO3) of the AR-coated plane-parallel-plate sample at 1.064 µm. The open squares are experimental data, and the solid curve is the theoretical fitting curve with Eq. (5).

Fig. 7
Fig. 7

Sample thickness dependence versus the SH power for d33 (congruent LiNbO3) of the Sumitomo Metal Mining wedge sample measured with the Nd:YAG laser. The fundamental beam radius was 0.95 mm. The open squares are experimental data, and the solid curve is a curve fitted with Eq. (2). The dotted curve is a theoretical fitting curve neglecting multiple reflection effect [Eq. (4)], which is shifted upward by a small amount indicated by the vertical bar.

Fig. 8
Fig. 8

Rotation angle versus the SH power for d31 of congruent LiNbO3 at 1.064 µm when the sample was rotated around (a) the Z axis and (b) the X axis and the incident fundamental wave was polarized (a) in the XY plane and (b) along the X axis. The open squares are experimental data, and the solid curves are theoretical fitting curves.

Fig. 9
Fig. 9

Experimental setup for (a) the PF measurement with an Ar laser as the pump source and (b) the DFG measurement.

Fig. 10
Fig. 10

PF signal power as a function of (a) the solid angle πθ2 and (b) the pump power Pp. The pump wavelength was 0.488 µm. Open squares are experimental data, and solid curves represent least-squares fitting.

Fig. 11
Fig. 11

Temperature tuning curve for DFG. Open squares represent experimental data, and the solid curve is the theoretical tuning curve.

Fig. 12
Fig. 12

Absolute magnitudes of the nonlinear-optical coefficients of congruent LiNbO3 (filled circles). The wavelength on the abscissa is either the fundamental wavelength of the SHG measurement or twice the pump wavelength of PF and DFG measurements. Open squares represent the standard SHG values of Miller et al.,2 and the thickly outlined circle is the PF value determined by Choy and Byer.3

Fig. 13
Fig. 13

Absolute magnitudes of the nonlinear-optical coefficients of 1%MgO:LiNbO3 (filled circles).

Fig. 14
Fig. 14

Absolute magnitudes of the nonlinear-optical coefficients of 5%MgO:LiNbO3 (filled circles). The wavelength on the abscissa is either the fundamental wavelength of the SHG measurement or twice the pump wavelength of the PF measurement. Open squares represent the standard value of Eckardt et al.7

Fig. 15
Fig. 15

Absolute magnitudes of the nonlinear-optical coefficients of LiTaO3 (filled circles). Open squares represent the values of Miller and Savage.30

Fig. 16
Fig. 16

Absolute magnitudes of the nonlinear-optical coefficients of KNbO3 (filled circles). Open squares represent the values of Baumert et al.61

Fig. 17
Fig. 17

Absolute magnitudes of the nonlinear-optical coefficients of KTP (filled circles). Open squares represent the values reported by Vanherzeele and Bierlein,4 open diamonds those by Boulanger et al.,68 and the thickly outlined circle that of Zondy et al.6

Fig. 18
Fig. 18

Sample thickness versus the SH power for d36 of GaAs by the wedge-technique measurement at 1.533 µm. The open squares are experimental data, and the solid curve is a curve calculated with Eq. (22).

Fig. 19
Fig. 19

Absolute magnitudes of the nonlinear-optical coefficients of GaAs (filled circles). The open square represents the value of Soref and Moos,72 the open circle that of Chang et al.,73 the open diamond that of Johnston and Kaminow,74 and the thickly outlined circle that of Choy and Byer.3

Fig. 20
Fig. 20

Absolute magnitudes of the nonlinear-optical coefficients of GaP (filled circles). The open square represents the value of Miller,16 the open circle that of Soref and Moos,72 the open diamond that of Levine and Bethea,34 and the thickly outlined circle that of Choy and Byer.3

Fig. 21
Fig. 21

Absolute magnitudes of the nonlinear-optical coefficients of α-ZnS (filled circles). The thickly outlined circle represents the value of Soref and Moos,72 and the open squares those of Singh.13

Fig. 22
Fig. 22

Absolute magnitudes of the nonlinear-optical coefficients of CdS (filled circles). The open squares represent the values reported by Miller et al.76

Fig. 23
Fig. 23

Absolute magnitude of the nonlinear-optical coefficients of ZnSe (filled circle). The open square represents the value reported by Soref and Moos,72 and the outlined circle that by Hase et al.56

Fig. 24
Fig. 24

Absolute magnitudes of the nonlinear-optical coefficients of CdTe (filled circles).

Fig. 25
Fig. 25

Schematic of multiple reflection of the fundamental and SH waves in a plane-parallel-plate sample.

Fig. 26
Fig. 26

Square root of the multiple-reflection correction factors versus refractive index. The solid curve represents the coherent correction factor at normal incidence, and the dashed curves show the incoherent correction factors for various incident angles.

Tables (13)

Tables Icon

Table 1 Summary of the Nonlinear-Optical Coefficients Determined by SHG and PF Measurementsa

Tables Icon

Table 2 Summary of Reported Values of Nonlinear-Optical Coefficients of LiNbO3 (in pm/V)a

Tables Icon

Table 3 Methods and Wavelengths for Determination of Nonlinear-Optical Coefficients of Congruent LiNbO3a

Tables Icon

Table 4 Congruent LiNbO3 Wedge Samples Used in the SHG Measurements

Tables Icon

Table 5 Refractive Indices of Congruent LiNbO3 Used in the Data Analysisa

Tables Icon

Table 6 Absolute Magnitudes of Second-Order Nonlinear-Optical Coefficients of Congruent LiNbO3

Tables Icon

Table 7 Sizes of Samples Used in SHG Measurements

Tables Icon

Table 8 Refractive Indices used in Data Analyses

Tables Icon

Table 9 Additional Refractive Indices Used in Data Analyses

Tables Icon

Table 10 Absolute Magnitudes of Second-Order Nonlinear-Optical Coefficients (pm/V)a

Tables Icon

Table 11 Additional Absolute Magnitudes of Second-Order Nonlinear-Optical Coefficients (pm/V)a

Tables Icon

Table 12 Experimentally Determined Miller Δ (10-13 m/V)

Tables Icon

Table 13 Additional Experimentally Determined Miller Δ (10-13 m/V)

Equations (99)

Equations on this page are rendered with MathJax. Learn more.

Δijk=dijk(-ω3; ω1, ω2)[ni2(ω3)-1][nj2(ω1)-1][nk2(ω2)-1],
P2ω(L)=K(Pω)22L2π1/2wx2wy(ΔkL/2)2×-exp-4x2wx2F[l(x)]G[l(x)]dx,
K=2ω2d2π0c3(nω)2n2ω,
P2ω(L)=K(Pω)2L2wxwy sin2(ΔkL/2)(ΔkL/2)2.
I2ω=2ω2d332 cos θi(Iω)2L20c3(wω)2w2ωsin2 ΨΨ2,
wω=[(nω)2-sin2 θi]1/2,
w2ω=[(n2ω)2-sin2 θi]1/2,
Ψ=2πLλ(w2ω-wω),
I2ω=2ω2d312 cos θi(Iω)2L20c3(wω)2w2ωsin2 ΨΨ2.
I2ω=2ω2d312v2ω cos θi(Iω)2L20c3(wω)2(ne2ω)2ne2ω(θω)ne2ω4×[ne2ω(θ2ω)]2-(noω)2[ne2ω(θω)]2-(noω)22 sin2 ΨΨ2,
wω=[(noω)2-sin2 θi]1/2,
v2ω=ne2ωno2ω[(no2ω)2-sin2 θi]1/2,
ne2ω(θω)=noω(wω)2(ne2ω)2+sin2 θi(no2ω)2-1/2,
ne2ω(θ2ω)=[(v2ω)2+sin2 θi]1/2,
Ψ=2πLλ(v2ω-wω),
Ps=ωs4ωins2π20c5ninp|b|d2Lπθ2Pp,
θ=rnsf,
b=ksωs-kiωi.
Ps=4ωs2wsxwsyπ0c3npnsniwpxwpywixwiyPpPiL2d2sin(ΔkL/2)ΔkL/22,
1wsx2=1wpx2+1wix2,
1wsy2=1wpy2+1wiy2.
PX(ωs)=20dXZX(-ωs; ωp,-ωi)EZ(ωp)EX*(ωi).
dXZX(-ωs; ωp,-ωi)=dZXX(-ωp; ωs, ωi).
dZXX(-ωp; ωs, ωi)=dZXX(-2ω; ω, ω)
d33(1%MgO:LN)=20.3 pm/V,
d31(1%MgO:LN)=3.2 pm/V,
d33(5%MgO:LN)=20.3 pm/V,
d31(5%MgO:LN)=3.4 pm/V
d33(1%MgO:LN)=24.9 pm/V,
d31(1%MgO:LN)=4.6 pm/V,
d33(5%MgO:LN)=25.0 pm/V,
d31(5%MgO:LN)=4.4 pm/V
d33(1%MgO:LN)=27.5 pm/V,
d31(1%MgO:LN)=4.8 pm/V,
d33(5%MgO:LN)=28.4 pm/V,
d31(5%MgO:LN)=4.9 pm/V
P2ω(L)=K(Pω)22L2π1/2wx2wy(ΔkL/2)2×-exp-4x2wx2F[l(x)]G[l(x)]dx,
K=2ω2diij2π0c3niωnjω[n2ω-(niω-njω)/2],
I2ω=128ω2diij2 cos4 θi cos2(θωp+ρ)(Iω)2L20c3(wω+cos θi)2[cos(θωp+ρ)+neω(θωp)cos ρ cos θi]2(w2ω+cos θi)2sin2 ΨΨ2.
wω=[(niω)2-sin2 θi]1/2,
w2ω=[(ni2ω)2-sin2 θi]1/2,
neω(θωp)=[(vω)2+sin2 θi]1/2,
vω=njωnlω[(nlω)2-sin2 θi]1/2,
cos ρ=nlωnjωneω(θωp){(nlω)2+(njω)2-[neω(θωp)]2}1/2,
cos(θωp+ρ)=neω(θωp)vω cos ρ(njω)2,
Ψ=2πLλ[w2ω-(vω+wω)/2],
P2ω(L)=K(Pω)22L2π1/2wx2wy[(α/2)2+(Δk)2](L/2)2×- exp-4x2wx2A[l(x)]dx,
K=2ω2deff2π0c3(nω)2n2ω.
A(l)=4n2ω(n2ω+1)21+[(nω)2-1]24(nω)2sin2 kb2l2×(nω+1)4{[1-exp(-αl/2)]2+4 exp(-αl/2)sin2(Δkl/2)}64(nω)2+[(nω)2-1]2[(α/2)2+(Δk)2]{[1-exp(-αl/2)]2+4 exp(-αl/2)sin2(kfl/2)}32(nω)2[(α/2)2+kf2]+(nω-1)4[(α/2)2+(Δk)2]{[1-exp(-αl/2)]2+4 exp(-αl/2)sin2[(kf+kb)l/2]}64(nω)2[(α/2)2+(kf+kb)2],
E0ω(z, t)=1/2E0ω exp[i(k0z-ωt)]+c.c.,
EMω(z, t)=1/2eˆjEMjω exp[i(kjz-ωt)]+c.c.,
EMω(z, t)=1/2eˆjEMjω exp[-i(kjz+ωt)]+c.c.,
EMjω=tjE0ω1-rj2 exp(iϕj),
EMjω=tjrjE0ω1-rj2 exp(iϕj),
ϕj=2ωcnjωl,
tj=2njω+1,
rj=njω-1njω+1,
kj=ωcnjω,
EMω(z, t)=12eˆj 12EMjω exp[i(kjz-ωt)]+eˆk 12EMkω exp[i(kkz-ωt)]+c.c.,
EMω(z, t)=12eˆj 12EMjω exp[-i(kjz+ωt)]+eˆk 12EMkω exp[-i(kkz+ωt)]+c.c.,
PNL(z, t)=1/2eˆi0deff{EMjωEMkω exp[i(kj+kk)z]+EMjωEMkω exp[-i(kj-kk)z]+EMjωEMkω exp[i(kj-kk)z]+EMjωEMkω exp[-i(kj+kk)z]}×exp(-2iωt)+c.c.
××E2ω(z, t)+(n2ω)2c22E2ω(z, t)t2
=-μ0 2PNL(z,t)t2,
E2ω(z, t)=12eˆi[EM2ω exp(ikfz)+EM2ω exp(-ikfz)-C1 exp(ikbz)-C2 exp(ikmz)-C3 exp(-ikmz)-C4 exp(-ikbz)]×exp(-2iωt)+c.c.,
H2ω(z, t)=14ωμ0(zˆ×eˆi)[kfEM2ω exp(ikfz)-kfEM2ω exp(-ikfz)-kbC1 exp(ikbz)-kmC2 exp(ikmz)+kmC3 exp(-ikmz)+kbC4 exp(-ikbz)]exp(-2iωt)+c.c.,
kf=2ωcn2ω,
kb=ωc(njω+nkω),
km=-ωc(njω-nkω),
C1=deffkf2-kb22ωc2EMjωEMkω,
C2=deffkf2-km22ωc2EMjωEMkω,
C3=deffkf2-km22ωc2EMjωEMkω,
C4=deffkf2-kb22ωc2EMjωEMkω,
E2ω(z, t)=1/2eˆiER2ω exp[-2i(k0z+ωt)]+c.c.,
H2ω(z, t)=-1/2(zˆ×eˆi) k0ωμ0ER2ω exp[-2i(k0z+ωt)]+c.c.
E2ω(z, t)=1/2eˆiET2ω exp[2i(k0z-ωt)]+c.c.,
H2ω(z, t)=1/2(zˆ×eˆi) k0ωμ0ET2ω exp[2i(k0z-ωt)]+c.c.
I2ω=0c2|ET2ω|2=8ω2deff2(Iω)20c3njωnkω[n2ω-(njω-nkω)/2](Δk)2F(l)G(l),
F(l)=1(1+F2ω sin2 kfl)(1+Fωj sin2 kjl)(1+Fωk sin2 kkl),
G(l)=Q(1) sin2 Δk2l-Q(2) sin2 kf+kb2l-Q(3) sin2 kml+Q(4) sin2 kfl+Q(5) sin2 kbl+Q(6) sin2 kf+km2l+Q(7) sin2 kf-km2l-Q(8) sin2 kjl-Q(9) sin2 kkl,
F2ω=[(n2ω)2-1]24(n2ω)2,
Fωj=[(njω)2-1]24(njω)2,
Fωk=[(nkω)2-1]24(nkω)2,
Q(1)=14(2n2ω+njω+nkω)2(2n2ω+njω-nkω){n2ω(njω+nkω)(njωnkω+3)[4(n2ω)2-(njω)2-(nkω)2+6]+[(njω)2+4njωnkω+(nkω)2+2][8(n2ω)2-(njω)2-(nkω)2+2]},
Q(2)=14(2n2ω+njω+nkω)2(2n2ω+njω-nkω){n2ω(njω+nkω)(njωnkω+3)[4(n2ω)2-(njω)2-(nkω)2+6]-[(njω)2+4njωnkω+(nkω)2+2][8(n2ω)2-(njω)2-(nkω)2+2]},
Q(3)=[(njω)2-1][(nkω)2-1][4-(njω-nkω)2][2n2ω-(njω+nkω)]232njωnkω(2n2ω+njω-nkω)2[2n2ω-(njω-nkω)],
Q(4)=njωnkω[(n2ω)2-1]{[4(n2ω)2-(njω)2-(nkω)2+2]2-16(n2ω)2}2(2n2ω+njω+nkω)2(2n2ω+njω-nkω)2[2n2ω-(njω-nkω)],
Q(5)=[(njω)2-1][(nkω)2-1][2n2ω-(njω-nkω)][(njω+nkω)2-4]32njωnkω(2n2ω+njω+nkω)2,
Q(6)=[2n2ω-(njω+nkω)]4(2n2ω+njω+nkω)(2n2ω+njω-nkω)2[2n2ω-(njω-nkω)]{[4njωnkω-(njω)2-(nkω)2-2][8(n2ω)2-(njω)2-(nkω)2+2]+n2ω(njω-nkω)(njωnkω-3)[4(n2ω)2-(njω)2-(nkω)2+6]},
Q(7)=[2n2ω-(njω+nkω)]4(2n2ω+njω+nkω)(2n2ω+njω-nkω)2[2n2ω-(njω-nkω)]{[4njωnkω-(njω)2-(nkω)2-2][8(n2ω)2-(njω)2-(nkω)2+2]-n2ω(njω-nkω)(njωnkω-3)[4(n2ω)2-(njω)2-(nkω)2+6]},
Q(8)=[(njω)2-1][2n2ω-(njω+nkω)]2[2n2ω-(njω-nkω)]16njωnkω{8(n2ω)2[2(n2ω)2-(njω)2-(nkω)2]+[(njω)2-(nkω)2]2}[(nkω)4+13(nkω)2-(njω)2(nkω)2-(njω)2+4],
Q(9)=[(nkω)2-1][2n2ω-(njω+nkω)]2[2n2ω-(njω-nkω)]16njωnkω{8(n2ω)2[2(n2ω)2-(njω)2-(nkω)2]+[(njω)2-(nkω)2]2}[(njω)4+13(njω)2-(njω)2(nkω)2-(nkω)2+4].
Iω(x, y)=Iω(0, 0)exp-2x2wx2exp-2y2wy2
I2ω(x, y)=8ω2deff2[Iω(x, y)]20c3njωnkω[n2ω-(njω-nkω)/2](Δk)2×F[l(x)]G[l(x)],
l(x)=L+x tan θ.
P2ω(L)=-I2ω(x, y)dxdy=K(Pω)22L2π1/2wx2wy(ΔkL/2)2×-exp-4x2wx2F[l(x)]G[l(x)]dx,
K=2ω2deff2π0c3njωnkω[n2ω-(njω-nkω)/2]
Rinc=1+r6(1-r4)(1-r8),
Rcoh=(n+1)6(n6+15n4+15n2+1)2048n61π×0π dx[1+F sin2(2x)][1+F sin2(x)]2.
Rinc(θ=0)=(n+1)6(n4+14n2+1)64n2(n6+7n4+7n2+1).

Metrics