Abstract

The photoconductivity and holographic current have been studied in Er-, Tm-, and Ho-doped Y3Sc2Ga3O12 laser crystals under visible and infrared excitation. Kinetics and spectroscopic studies have shown that photoconductivity is linearly proportional to the concentration of excited 4f states. The holographic current was described with a model accounting for the energy transfer between the rare-earth and ligand electronic shells, ionization, recombination, and the diffusion and drift currents in the conduction band. The dependence of the holographic current on the modulation frequency, grating vector, etc. were used to determine the carriers’ diffusion length and the screening length in Er-doped crystals.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Förster, “Zwischenmolekulare Energiewanderund und Fluorescenz,” Ann. Phys. 2, 55 (1948).
    [CrossRef]
  2. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  3. C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence-quenching in NdxLa1-xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
    [CrossRef]
  4. V. A. French and R. C. Powell, “Laser-induced grating measurements of energy migration in Tm, Ho:YAG,” Opt. Lett. 16, 666–668 (1991).
    [CrossRef] [PubMed]
  5. F. M. Hashmi, R. C. Powell, and G. Boulon, “Energy transfer and radiationless relaxation processes in Nd3+ and Cr3+ doped mixed garnet crystals,” Opt. Mater. 1, 281–298 (1992).
    [CrossRef]
  6. M. A. Noginov, H. J. Caulfield, P. Venkateswarlu, M. Mahdi, and I. T. Sorokina, “Transient light induced grating study of excitation diffusion in Y3Sc2Ga3O12 laser crystals,” Opt. Mater. 6, 245–259 (1996).
    [CrossRef]
  7. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [CrossRef]
  8. R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
    [CrossRef]
  9. G. Huber, “Miniature neodymium lasers,” in Current Topics in Materials Science, E. Kaldis, ed. (North-Holland, Amsterdam, 1980), Vol. 4, pp. 1–45.
  10. M. V. Eremin, A. A. Kaminskii, and A. A. Kornienko, “Indirect interaction of 4f electrons with ligands through empty d shells,” Sov. Phys. Solid State 24, 1049–1050 (1982).
  11. A. A. Kaminskii, A. A. Kornienko, and M. I. Chertanov, “Effective probability operator for spontaneous electric dipole transition in fN systems, considered allowing for electron correlation effects,” Sov. Phys. Solid State 27, 339–340 (1985).
  12. M. V. Eremin, A. A. Kaminskii, and O. A. Anikeenok, “Indirect interaction of 4f electrons with ligands via filled 5p shells,” Sov. Phys. Solid State 27, 279–280 (1985).
  13. A. E. Nosenko, V. N. Shevchuk, and A. V. Gal’chinskii, “Effect of rare-earth ions on the photoelectric properties of garnets,” J. Appl. Spectrosc.89–92 (1987).
  14. P. M. Grant and W. Ruppel, “Photoconductivity in garnets,” Solid State Commun. 5, 543–546 (1967).
    [CrossRef]
  15. G. Wittman and R. M. Macfarlane, “Photon-gated photoconductivity of Pr3+:YAG,” Opt. Lett. 21, 426–429 (1996).
    [CrossRef]
  16. H. Manaa, C. Pedrini, and R. Moncorge, “Photoconductivity measurements in broadband laser materials,” in Advanced Solid-State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 371–375.
  17. S. A. Basun, S. P. Feofilov, and A. A. Kaplyanskii, “Photoelectric studies of two-step photoionization of Ti3+ ions in oxide crystals,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 333–335.
  18. S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.
  19. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
    [CrossRef]
  20. V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).
  21. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
    [CrossRef]
  22. M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, and M. Mahdi, “Photoconductivity and electro-motive force study of rare earth doped YSGG laser crystals,” in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 595–600.
  23. V. A. Smirnov and I. A. Shcherbakov, “Rare-earth scandium chromium garnets as active media for solid-state lasers,” IEEE J. Quantum Electron. 24, 949–959 (1988).
    [CrossRef]
  24. N. Noginova, N. Kukhtarev, M. A. Noginov, B. S. Chen, H. J. Caulfield, and P. Venkateswarlu, “Holographic-current studies in laser and photorefractive crystals,” J. Opt. Soc. Am. B 13, 2622–2629 (1996).
    [CrossRef]
  25. N. Kukhtarev, M. A. Noginov, N. E. Noginova, H. J. Caulfield, and P. Venkateswarlu, “High-contrast holographic gratings in laser and photorefractive crystals,” presented at the 1996 Annual Meeting of the Optical Society of America, October, 20–24, 1996, Rochester, New York.

1996 (3)

1992 (1)

F. M. Hashmi, R. C. Powell, and G. Boulon, “Energy transfer and radiationless relaxation processes in Nd3+ and Cr3+ doped mixed garnet crystals,” Opt. Mater. 1, 281–298 (1992).
[CrossRef]

1991 (1)

1990 (2)

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

1988 (1)

V. A. Smirnov and I. A. Shcherbakov, “Rare-earth scandium chromium garnets as active media for solid-state lasers,” IEEE J. Quantum Electron. 24, 949–959 (1988).
[CrossRef]

1987 (1)

A. E. Nosenko, V. N. Shevchuk, and A. V. Gal’chinskii, “Effect of rare-earth ions on the photoelectric properties of garnets,” J. Appl. Spectrosc.89–92 (1987).

1985 (2)

A. A. Kaminskii, A. A. Kornienko, and M. I. Chertanov, “Effective probability operator for spontaneous electric dipole transition in fN systems, considered allowing for electron correlation effects,” Sov. Phys. Solid State 27, 339–340 (1985).

M. V. Eremin, A. A. Kaminskii, and O. A. Anikeenok, “Indirect interaction of 4f electrons with ligands via filled 5p shells,” Sov. Phys. Solid State 27, 279–280 (1985).

1982 (2)

M. V. Eremin, A. A. Kaminskii, and A. A. Kornienko, “Indirect interaction of 4f electrons with ligands through empty d shells,” Sov. Phys. Solid State 24, 1049–1050 (1982).

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence-quenching in NdxLa1-xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

1979 (1)

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

1975 (1)

V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).

1967 (1)

P. M. Grant and W. Ruppel, “Photoconductivity in garnets,” Solid State Commun. 5, 543–546 (1967).
[CrossRef]

1962 (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

1948 (1)

Th. Förster, “Zwischenmolekulare Energiewanderund und Fluorescenz,” Ann. Phys. 2, 55 (1948).
[CrossRef]

Anikeenok, O. A.

M. V. Eremin, A. A. Kaminskii, and O. A. Anikeenok, “Indirect interaction of 4f electrons with ligands via filled 5p shells,” Sov. Phys. Solid State 27, 279–280 (1985).

Basun, S. A.

S. A. Basun, S. P. Feofilov, and A. A. Kaplyanskii, “Photoelectric studies of two-step photoionization of Ti3+ ions in oxide crystals,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 333–335.

S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.

Boulon, G.

F. M. Hashmi, R. C. Powell, and G. Boulon, “Energy transfer and radiationless relaxation processes in Nd3+ and Cr3+ doped mixed garnet crystals,” Opt. Mater. 1, 281–298 (1992).
[CrossRef]

Caulfield, H. J.

M. A. Noginov, H. J. Caulfield, P. Venkateswarlu, M. Mahdi, and I. T. Sorokina, “Transient light induced grating study of excitation diffusion in Y3Sc2Ga3O12 laser crystals,” Opt. Mater. 6, 245–259 (1996).
[CrossRef]

N. Noginova, N. Kukhtarev, M. A. Noginov, B. S. Chen, H. J. Caulfield, and P. Venkateswarlu, “Holographic-current studies in laser and photorefractive crystals,” J. Opt. Soc. Am. B 13, 2622–2629 (1996).
[CrossRef]

M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, and M. Mahdi, “Photoconductivity and electro-motive force study of rare earth doped YSGG laser crystals,” in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 595–600.

N. Kukhtarev, M. A. Noginov, N. E. Noginova, H. J. Caulfield, and P. Venkateswarlu, “High-contrast holographic gratings in laser and photorefractive crystals,” presented at the 1996 Annual Meeting of the Optical Society of America, October, 20–24, 1996, Rochester, New York.

Chase, L. L.

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

Chen, B. S.

Chertanov, M. I.

A. A. Kaminskii, A. A. Kornienko, and M. I. Chertanov, “Effective probability operator for spontaneous electric dipole transition in fN systems, considered allowing for electron correlation effects,” Sov. Phys. Solid State 27, 339–340 (1985).

Danger, T.

S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Eremin, M. V.

M. V. Eremin, A. A. Kaminskii, and O. A. Anikeenok, “Indirect interaction of 4f electrons with ligands via filled 5p shells,” Sov. Phys. Solid State 27, 279–280 (1985).

M. V. Eremin, A. A. Kaminskii, and A. A. Kornienko, “Indirect interaction of 4f electrons with ligands through empty d shells,” Sov. Phys. Solid State 24, 1049–1050 (1982).

Feofilov, S. P.

S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.

S. A. Basun, S. P. Feofilov, and A. A. Kaplyanskii, “Photoelectric studies of two-step photoionization of Ti3+ ions in oxide crystals,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 333–335.

Förster, Th.

Th. Förster, “Zwischenmolekulare Energiewanderund und Fluorescenz,” Ann. Phys. 2, 55 (1948).
[CrossRef]

French, V. A.

Gal’chinskii, A. V.

A. E. Nosenko, V. N. Shevchuk, and A. V. Gal’chinskii, “Effect of rare-earth ions on the photoelectric properties of garnets,” J. Appl. Spectrosc.89–92 (1987).

Grant, P. M.

P. M. Grant and W. Ruppel, “Photoconductivity in garnets,” Solid State Commun. 5, 543–546 (1967).
[CrossRef]

Hashmi, F. M.

F. M. Hashmi, R. C. Powell, and G. Boulon, “Energy transfer and radiationless relaxation processes in Nd3+ and Cr3+ doped mixed garnet crystals,” Opt. Mater. 1, 281–298 (1992).
[CrossRef]

Huber, G.

G. Huber, “Miniature neodymium lasers,” in Current Topics in Materials Science, E. Kaldis, ed. (North-Holland, Amsterdam, 1980), Vol. 4, pp. 1–45.

S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Kaminskii, A. A.

M. V. Eremin, A. A. Kaminskii, and O. A. Anikeenok, “Indirect interaction of 4f electrons with ligands via filled 5p shells,” Sov. Phys. Solid State 27, 279–280 (1985).

A. A. Kaminskii, A. A. Kornienko, and M. I. Chertanov, “Effective probability operator for spontaneous electric dipole transition in fN systems, considered allowing for electron correlation effects,” Sov. Phys. Solid State 27, 339–340 (1985).

M. V. Eremin, A. A. Kaminskii, and A. A. Kornienko, “Indirect interaction of 4f electrons with ligands through empty d shells,” Sov. Phys. Solid State 24, 1049–1050 (1982).

Kaplyanskii, A. A.

S. A. Basun, S. P. Feofilov, and A. A. Kaplyanskii, “Photoelectric studies of two-step photoionization of Ti3+ ions in oxide crystals,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 333–335.

S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.

Kornienko, A. A.

A. A. Kaminskii, A. A. Kornienko, and M. I. Chertanov, “Effective probability operator for spontaneous electric dipole transition in fN systems, considered allowing for electron correlation effects,” Sov. Phys. Solid State 27, 339–340 (1985).

M. V. Eremin, A. A. Kaminskii, and A. A. Kornienko, “Indirect interaction of 4f electrons with ligands through empty d shells,” Sov. Phys. Solid State 24, 1049–1050 (1982).

Kukhtarev, N.

N. Noginova, N. Kukhtarev, M. A. Noginov, B. S. Chen, H. J. Caulfield, and P. Venkateswarlu, “Holographic-current studies in laser and photorefractive crystals,” J. Opt. Soc. Am. B 13, 2622–2629 (1996).
[CrossRef]

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).

M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, and M. Mahdi, “Photoconductivity and electro-motive force study of rare earth doped YSGG laser crystals,” in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 595–600.

N. Kukhtarev, M. A. Noginov, N. E. Noginova, H. J. Caulfield, and P. Venkateswarlu, “High-contrast holographic gratings in laser and photorefractive crystals,” presented at the 1996 Annual Meeting of the Optical Society of America, October, 20–24, 1996, Rochester, New York.

Lawson, C. M.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence-quenching in NdxLa1-xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Macfarlane, R. M.

Mahdi, M.

M. A. Noginov, H. J. Caulfield, P. Venkateswarlu, M. Mahdi, and I. T. Sorokina, “Transient light induced grating study of excitation diffusion in Y3Sc2Ga3O12 laser crystals,” Opt. Mater. 6, 245–259 (1996).
[CrossRef]

M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, and M. Mahdi, “Photoconductivity and electro-motive force study of rare earth doped YSGG laser crystals,” in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 595–600.

Manaa, H.

H. Manaa, C. Pedrini, and R. Moncorge, “Photoconductivity measurements in broadband laser materials,” in Advanced Solid-State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 371–375.

Markov, V.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Moncorge, R.

H. Manaa, C. Pedrini, and R. Moncorge, “Photoconductivity measurements in broadband laser materials,” in Advanced Solid-State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 371–375.

Noginov, M. A.

N. Noginova, N. Kukhtarev, M. A. Noginov, B. S. Chen, H. J. Caulfield, and P. Venkateswarlu, “Holographic-current studies in laser and photorefractive crystals,” J. Opt. Soc. Am. B 13, 2622–2629 (1996).
[CrossRef]

M. A. Noginov, H. J. Caulfield, P. Venkateswarlu, M. Mahdi, and I. T. Sorokina, “Transient light induced grating study of excitation diffusion in Y3Sc2Ga3O12 laser crystals,” Opt. Mater. 6, 245–259 (1996).
[CrossRef]

M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, and M. Mahdi, “Photoconductivity and electro-motive force study of rare earth doped YSGG laser crystals,” in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 595–600.

N. Kukhtarev, M. A. Noginov, N. E. Noginova, H. J. Caulfield, and P. Venkateswarlu, “High-contrast holographic gratings in laser and photorefractive crystals,” presented at the 1996 Annual Meeting of the Optical Society of America, October, 20–24, 1996, Rochester, New York.

Noginova, N.

Noginova, N. E.

M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, and M. Mahdi, “Photoconductivity and electro-motive force study of rare earth doped YSGG laser crystals,” in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 595–600.

N. Kukhtarev, M. A. Noginov, N. E. Noginova, H. J. Caulfield, and P. Venkateswarlu, “High-contrast holographic gratings in laser and photorefractive crystals,” presented at the 1996 Annual Meeting of the Optical Society of America, October, 20–24, 1996, Rochester, New York.

Nosenko, A. E.

A. E. Nosenko, V. N. Shevchuk, and A. V. Gal’chinskii, “Effect of rare-earth ions on the photoelectric properties of garnets,” J. Appl. Spectrosc.89–92 (1987).

Odulov, S.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Payne, S. A.

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

Pedrini, C.

H. Manaa, C. Pedrini, and R. Moncorge, “Photoconductivity measurements in broadband laser materials,” in Advanced Solid-State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 371–375.

Peterman, K.

S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Powell, R. C.

F. M. Hashmi, R. C. Powell, and G. Boulon, “Energy transfer and radiationless relaxation processes in Nd3+ and Cr3+ doped mixed garnet crystals,” Opt. Mater. 1, 281–298 (1992).
[CrossRef]

V. A. French and R. C. Powell, “Laser-induced grating measurements of energy migration in Tm, Ho:YAG,” Opt. Lett. 16, 666–668 (1991).
[CrossRef] [PubMed]

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence-quenching in NdxLa1-xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Ruppel, W.

P. M. Grant and W. Ruppel, “Photoconductivity in garnets,” Solid State Commun. 5, 543–546 (1967).
[CrossRef]

Shcherbakov, I. A.

V. A. Smirnov and I. A. Shcherbakov, “Rare-earth scandium chromium garnets as active media for solid-state lasers,” IEEE J. Quantum Electron. 24, 949–959 (1988).
[CrossRef]

Shevchuk, V. N.

A. E. Nosenko, V. N. Shevchuk, and A. V. Gal’chinskii, “Effect of rare-earth ions on the photoelectric properties of garnets,” J. Appl. Spectrosc.89–92 (1987).

Smirnov, V. A.

V. A. Smirnov and I. A. Shcherbakov, “Rare-earth scandium chromium garnets as active media for solid-state lasers,” IEEE J. Quantum Electron. 24, 949–959 (1988).
[CrossRef]

Sokolov, I. A.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Sorokina, I. T.

M. A. Noginov, H. J. Caulfield, P. Venkateswarlu, M. Mahdi, and I. T. Sorokina, “Transient light induced grating study of excitation diffusion in Y3Sc2Ga3O12 laser crystals,” Opt. Mater. 6, 245–259 (1996).
[CrossRef]

Soskin, M.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Stepanov, S. I.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Trofimov, G. S.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Venkateswarlu, P.

N. Noginova, N. Kukhtarev, M. A. Noginov, B. S. Chen, H. J. Caulfield, and P. Venkateswarlu, “Holographic-current studies in laser and photorefractive crystals,” J. Opt. Soc. Am. B 13, 2622–2629 (1996).
[CrossRef]

M. A. Noginov, H. J. Caulfield, P. Venkateswarlu, M. Mahdi, and I. T. Sorokina, “Transient light induced grating study of excitation diffusion in Y3Sc2Ga3O12 laser crystals,” Opt. Mater. 6, 245–259 (1996).
[CrossRef]

M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, and M. Mahdi, “Photoconductivity and electro-motive force study of rare earth doped YSGG laser crystals,” in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 595–600.

N. Kukhtarev, M. A. Noginov, N. E. Noginova, H. J. Caulfield, and P. Venkateswarlu, “High-contrast holographic gratings in laser and photorefractive crystals,” presented at the 1996 Annual Meeting of the Optical Society of America, October, 20–24, 1996, Rochester, New York.

Vinetskii, V.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).

Wilke, G. D.

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

Wittman, G.

Zwicker, W. K.

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence-quenching in NdxLa1-xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Ann. Phys. (1)

Th. Förster, “Zwischenmolekulare Energiewanderund und Fluorescenz,” Ann. Phys. 2, 55 (1948).
[CrossRef]

Ferroelectrics (1)

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. A. Smirnov and I. A. Shcherbakov, “Rare-earth scandium chromium garnets as active media for solid-state lasers,” IEEE J. Quantum Electron. 24, 949–959 (1988).
[CrossRef]

J. Appl. Phys. (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photoelectromotive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

J. Appl. Spectrosc. (1)

A. E. Nosenko, V. N. Shevchuk, and A. V. Gal’chinskii, “Effect of rare-earth ions on the photoelectric properties of garnets,” J. Appl. Spectrosc.89–92 (1987).

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Opt. Mater. (2)

F. M. Hashmi, R. C. Powell, and G. Boulon, “Energy transfer and radiationless relaxation processes in Nd3+ and Cr3+ doped mixed garnet crystals,” Opt. Mater. 1, 281–298 (1992).
[CrossRef]

M. A. Noginov, H. J. Caulfield, P. Venkateswarlu, M. Mahdi, and I. T. Sorokina, “Transient light induced grating study of excitation diffusion in Y3Sc2Ga3O12 laser crystals,” Opt. Mater. 6, 245–259 (1996).
[CrossRef]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[CrossRef]

Phys. Rev. B (2)

R. C. Powell, S. A. Payne, L. L. Chase, and G. D. Wilke, “Four-wave mixing of Nd-doped crystals and glasses,” Phys. Rev. B 41, 8593–8602 (1990).
[CrossRef]

C. M. Lawson, R. C. Powell, and W. K. Zwicker, “Transient grating investigation of exciton diffusion and fluorescence-quenching in NdxLa1-xP5O14 crystals,” Phys. Rev. B 26, 4836–4844 (1982).
[CrossRef]

Solid State Commun. (1)

P. M. Grant and W. Ruppel, “Photoconductivity in garnets,” Solid State Commun. 5, 543–546 (1967).
[CrossRef]

Sov. Phys. Solid State (3)

M. V. Eremin, A. A. Kaminskii, and A. A. Kornienko, “Indirect interaction of 4f electrons with ligands through empty d shells,” Sov. Phys. Solid State 24, 1049–1050 (1982).

A. A. Kaminskii, A. A. Kornienko, and M. I. Chertanov, “Effective probability operator for spontaneous electric dipole transition in fN systems, considered allowing for electron correlation effects,” Sov. Phys. Solid State 27, 339–340 (1985).

M. V. Eremin, A. A. Kaminskii, and O. A. Anikeenok, “Indirect interaction of 4f electrons with ligands via filled 5p shells,” Sov. Phys. Solid State 27, 279–280 (1985).

Sov. Tech. Phys. Lett. (1)

V. Vinetskii and N. Kukhtarev, “Anomalous photoelectric field and energy transfer during holographic grating recording in semiconductors,” Sov. Tech. Phys. Lett. 1, 84–87 (1975).

Other (6)

H. Manaa, C. Pedrini, and R. Moncorge, “Photoconductivity measurements in broadband laser materials,” in Advanced Solid-State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 371–375.

S. A. Basun, S. P. Feofilov, and A. A. Kaplyanskii, “Photoelectric studies of two-step photoionization of Ti3+ ions in oxide crystals,” in Advanced Solid-State Lasers, L. L. Chase and A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 333–335.

S. A. Basun, S. P. Feofilov, A. A. Kaplyanskii, T. Danger, G. Huber, and K. Peterman, “Photoionization and excited state absorption in YAlO3:Ti crystals,” in Advanced Solid-State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 339–342.

G. Huber, “Miniature neodymium lasers,” in Current Topics in Materials Science, E. Kaldis, ed. (North-Holland, Amsterdam, 1980), Vol. 4, pp. 1–45.

N. Kukhtarev, M. A. Noginov, N. E. Noginova, H. J. Caulfield, and P. Venkateswarlu, “High-contrast holographic gratings in laser and photorefractive crystals,” presented at the 1996 Annual Meeting of the Optical Society of America, October, 20–24, 1996, Rochester, New York.

M. A. Noginov, N. Kukhtarev, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, and M. Mahdi, “Photoconductivity and electro-motive force study of rare earth doped YSGG laser crystals,” in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 595–600.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Band structure,13 energy transfer, and charge transport in RE-doped garnets. CB, conduction band; VB, valence band; other abbreviations defined in text.

Fig. 2
Fig. 2

a, Photoconductivity setup: 1, crystal; 2, external dc bias (0–1000 V); 3, lock-in amplifier or oscilloscope; 4, chopper. b, Crystal with electrodes mounted upon opposite faces and a pinhole for laser pumping.

Fig. 3
Fig. 3

Holographic current setup: 1, beam splitter; 2, mirror; 3, mirror attached to the speaker; 4, crystal with electrodes; 5, external bias applied to the sample in some measurements (the dashed line shows the configuration of the circuit without external bias); 6, oscilloscope or lock-in amplifier; 7, wave-function generator.

Fig. 4
Fig. 4

a, Excitation spectrum of photocurrent and b, absorption spectrum of Er[4×1021 cm-3]:YSGG.

Fig. 5
Fig. 5

 4I13/2 emission (2) and photocurrent (3) kinetics in Er[4×1021 cm-3]-doped YSGG at square-pulsed excitation (1).

Fig. 6
Fig. 6

Decay of  4I13/2 emission (filled circles) and photocurrent (hatched squares) in Er[4×1021 cm-3]-doped YSGG after long-pulsed excitation.

Fig. 7
Fig. 7

Decay of  3H4 Tm and  5I7 Ho emission (filled triangles) and photocurrent (shaded squares) in Tm[1.5×1021 cm-3]:Ho[5×1019 cm-3]:YSGG after long-pulsed excitation.

Fig. 8
Fig. 8

Long-term dynamics of photoconductivity in Er[4×1021 cm-3]:YSGG. Excitation wavelength λ=488 nm; excitation density, 25W/cm2; distance between electric contacts, l2 mm.

Fig. 9
Fig. 9

Dependence of holographic current on pump intensity in Er[4×1021 cm-3]:YSGG; slope, 1.8. λpump=488 nm; ω =30 Hz; Θ=0.068 rad; diameter of the laser beam, 1 mm.

Fig. 10
Fig. 10

Dependence of holographic current in Er[4×1020 cm-3]:YSGG on the driving voltage applied to the speaker. (The pump wavelength is λpump=488 nm; the angle between the writing beams, Θ, is 0.286 rad.)

Fig. 11
Fig. 11

Dependence of holographic current in Er[4×1021 cm-3]-doped YSGG on frequency ω in frequency ranges a, 0–400 Hz and b, 0–8 Hz. λpump=488 nm, Θ=0.17 rad.

Fig. 12
Fig. 12

Dependence of holographic current in Er[4×1021 cm-3]-doped YSGG on external bias V. Θ =0.17 rad; λpump=488 nm; distance between electrodes, 1–2 mm; ω=20 Hz (squares) and ω=70 Hz (triangles).

Fig. 13
Fig. 13

Dependence of holographic current on LIG period in Er[4×1021 cm-3]:YSGG. λpump=488 nm, ω=30 Hz.

Fig. 14
Fig. 14

Holographic current response to steplike modulation of the LIG phase in Er[4×1021 cm-3]. Pumping wavelength λ =488 nm; angle between writing beams Θ=0.948 rad; pumping density, 25 W/cm2.

Fig. 15
Fig. 15

Relaxation time of the holographic current τ as a function of grating period L in a, Er[2×1020 cm-3]:YSGG and b, Er[4×1021 cm-3]:YSGG. Squares, experiment; solid curves, theory.24 Pumping wavelength λ=488 nm; pumping density, 25 W/cm2.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

n+T-+p-=T++p++s+,
ds0dt=fWfs0-s0Ws0-p0-s0Vs0s++s+Vs+s0,
dp0dt=s0Ws0p0-p0Wp0f-p0Vp0p+-p0Vp0p-+p-Vp--p0+p+Vp+-p0,
dfdt=R(F-f)-fτ-αn2-fWfs0+p0Wp0-f,
ds+dt=s0Vs0s+-s+Vs+s0,
dp-dt=p0Vp0p--p-Vp-p0,
dp+dt=p0Vp0p+-p+Vp+p0,
dT-dt=T0VT0T--T-VT-T0,
dT+dt=T0VT0T+-T+VT+T0,
T=T0+T++T-,
dndt=ds+dt+dp+dt-dp-dt+dT+dt-dT-dt-div je,
dndt=s0Vs0n-nVns++p0Vp0n-nVnp++p-Vp-n-nVnp0+T0VT0n-nVnT++T-VT-n-nVnT0-div je,
s0Vs0s+=s0Vs0n,
s+Vs+s0=nVns+,
p0Vp0p+=p0Vp0n,
p+Vp+p0=nVnp+,
p-Vp-p0=p-Vp-n,
p0Vp0p-=nVnp0,
T0VT0T+=T0VT0n,
T+VT+T0=nVnT+,
T-VT-T0=T-VT-n,
T0VT0T-=nVnT0.
dfdtR(F-f)-fτ-αn2,
dndtQ dfdt-div je,
j=eμnE-eDn,
div(E)=4πe(p-+T-+n-p+-T+-s+).
j(t)=1l01eμn(x)E(x, t)dx.
j=IX,
τR=τM L2+(2πLD)2L2+(2πLS)2.
jmaxL3[L2+(2πLD)2][L+(2πLS)2].

Metrics