Abstract

Energy-transfer processes (including upconversion) are quantitatively studied in a Tm:Yb:BaY2F8 laser crystal. Several energy-transfer, cross-relaxation, and upconversion parameters are determined. We prove that at excitation of the crystal via Yb ions, the Tm levels  3F4,  3H4,  3F3,2,  1G4, and  3P0 are populated via Yb–Tm interaction, and the level  1D2 is likely populated owing to  3F3 Tm3F3 Tm upconversion. The possibility of resonant excited-state absorption at 706 nm and resonant energy-transfer upconversion populating the level  1D2 are discussed. The possibility of avalanche pumping of Tm:Yb:BaY2F8 at 706 nm is shown.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Antipenko, S. P. Voronin, and T. A. Privalova, “New laser channels of the Tm3+ ion,” Opt. Spectrosc. 68, 164–166 (1990).
  2. R. J. Trash and L. F. Johnson, “Upconversion laser emission from Yb3+-sensitized Tm3+ in BaY2F8,” J. Opt. Soc. Am. B 11, 881–885 (1994).
    [CrossRef]
  3. Yu. P. Chukova, Anti-Stokes Luminescence and Its New Potential Applications (Sovetskoe Radio, Moscow, 1980), p. 74.
  4. B. M. Antipenko, A. A. Mak, O. B. Raba, K. B. Seiranyan, and T. V. Uvarova, “New lasing transition in the Tm3+ ion,” Sov. J. Quantum Electron. 13, 558–560 (1983).
    [CrossRef]
  5. B. M. Antipenko, R. V. Dumbravyanu, Yu. E. Perlin, O. B. Raba, and L. K. Sukhareva, “Spectroscopic aspects of the BaYb2F8 laser medium,” Opt. Spectrosc. 59, 3 (1985).
  6. X. X. Zxang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
    [CrossRef]
  7. F. Auzel, “Compteur quantique par transfert d’energie entre de Yb3+ a Tm3+ dans un tungstate mixte et dans verre germanate,” Compt. Rend. Acad. Sci. Paris B 263, 819–821 (1966).
  8. D. J. Simkin, J. Wang, and H. P. Jenssen, “Pump-probe measurement of the upconversion gain in Tm3+:YBF,” presented at the Optical Society of America Conference on Lasers and Electro-Optics, Anaheim, Calif., June 2–7, 1996, presentation CTuL43; D. J. Simkin, McGill University, Montreal, Quebec H3A 2K6, Canada (private communication).
  9. Further information is available from H. P. Jenssen, of Center for Research and Education in Optics and Lasers, University of Central Florida (formerly of Massachusetts Institute of Technology), in a MIT internal report on spectroscopy of Tm- and Ho-doped BaY₂F₈.
  10. V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Concentration quenching and upconversion of neodymium ions in LaSc3(BO3)4 and GdVO4 crystals,” in Advanced Solid-State Lasers, B. H. T. Chai and S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C.1995), pp. 509–513.
  11. V. I. Bilak, G. M. Zverev, G. O. Karapetyan, and A. M. Onishchenko, “Excitation energy transfer between trivalent rare-earth ions, stimulated by a radiation field,” JETP Lett. 14, 199–201 (1971).
  12. J. S. Chivian, W. E. Case, and E. E. Edden, “The photon avalanche: a new phenomenon in Pr3+ based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
    [CrossRef]
  13. A. Cassanho, H. P. Jenssen, M. A. Noginov, V. G. Ostroumov, G. Q. Sarkissian, I. A. Shcherbakov, and V. A. Smirnov, “New upconversion effects in RE3+-doped laser media,” in Advanced Solid-State Lasers, L. L. Chase and A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 300–305.

1995 (1)

X. X. Zxang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

1994 (1)

1990 (1)

B. M. Antipenko, S. P. Voronin, and T. A. Privalova, “New laser channels of the Tm3+ ion,” Opt. Spectrosc. 68, 164–166 (1990).

1985 (1)

B. M. Antipenko, R. V. Dumbravyanu, Yu. E. Perlin, O. B. Raba, and L. K. Sukhareva, “Spectroscopic aspects of the BaYb2F8 laser medium,” Opt. Spectrosc. 59, 3 (1985).

1983 (1)

B. M. Antipenko, A. A. Mak, O. B. Raba, K. B. Seiranyan, and T. V. Uvarova, “New lasing transition in the Tm3+ ion,” Sov. J. Quantum Electron. 13, 558–560 (1983).
[CrossRef]

1979 (1)

J. S. Chivian, W. E. Case, and E. E. Edden, “The photon avalanche: a new phenomenon in Pr3+ based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

1971 (1)

V. I. Bilak, G. M. Zverev, G. O. Karapetyan, and A. M. Onishchenko, “Excitation energy transfer between trivalent rare-earth ions, stimulated by a radiation field,” JETP Lett. 14, 199–201 (1971).

1966 (1)

F. Auzel, “Compteur quantique par transfert d’energie entre de Yb3+ a Tm3+ dans un tungstate mixte et dans verre germanate,” Compt. Rend. Acad. Sci. Paris B 263, 819–821 (1966).

Antipenko, B. M.

B. M. Antipenko, S. P. Voronin, and T. A. Privalova, “New laser channels of the Tm3+ ion,” Opt. Spectrosc. 68, 164–166 (1990).

B. M. Antipenko, R. V. Dumbravyanu, Yu. E. Perlin, O. B. Raba, and L. K. Sukhareva, “Spectroscopic aspects of the BaYb2F8 laser medium,” Opt. Spectrosc. 59, 3 (1985).

B. M. Antipenko, A. A. Mak, O. B. Raba, K. B. Seiranyan, and T. V. Uvarova, “New lasing transition in the Tm3+ ion,” Sov. J. Quantum Electron. 13, 558–560 (1983).
[CrossRef]

Auzel, F.

F. Auzel, “Compteur quantique par transfert d’energie entre de Yb3+ a Tm3+ dans un tungstate mixte et dans verre germanate,” Compt. Rend. Acad. Sci. Paris B 263, 819–821 (1966).

Bass, M.

X. X. Zxang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

Bilak, V. I.

V. I. Bilak, G. M. Zverev, G. O. Karapetyan, and A. M. Onishchenko, “Excitation energy transfer between trivalent rare-earth ions, stimulated by a radiation field,” JETP Lett. 14, 199–201 (1971).

Case, W. E.

J. S. Chivian, W. E. Case, and E. E. Edden, “The photon avalanche: a new phenomenon in Pr3+ based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Cassanho, A.

A. Cassanho, H. P. Jenssen, M. A. Noginov, V. G. Ostroumov, G. Q. Sarkissian, I. A. Shcherbakov, and V. A. Smirnov, “New upconversion effects in RE3+-doped laser media,” in Advanced Solid-State Lasers, L. L. Chase and A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 300–305.

Chai, B. H. T.

X. X. Zxang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

Chivian, J. S.

J. S. Chivian, W. E. Case, and E. E. Edden, “The photon avalanche: a new phenomenon in Pr3+ based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Chukova, Yu. P.

Yu. P. Chukova, Anti-Stokes Luminescence and Its New Potential Applications (Sovetskoe Radio, Moscow, 1980), p. 74.

Dumbravyanu, R. V.

B. M. Antipenko, R. V. Dumbravyanu, Yu. E. Perlin, O. B. Raba, and L. K. Sukhareva, “Spectroscopic aspects of the BaYb2F8 laser medium,” Opt. Spectrosc. 59, 3 (1985).

Edden, E. E.

J. S. Chivian, W. E. Case, and E. E. Edden, “The photon avalanche: a new phenomenon in Pr3+ based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Hong, P.

X. X. Zxang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

Huber, G.

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Concentration quenching and upconversion of neodymium ions in LaSc3(BO3)4 and GdVO4 crystals,” in Advanced Solid-State Lasers, B. H. T. Chai and S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C.1995), pp. 509–513.

Jensen, T.

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Concentration quenching and upconversion of neodymium ions in LaSc3(BO3)4 and GdVO4 crystals,” in Advanced Solid-State Lasers, B. H. T. Chai and S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C.1995), pp. 509–513.

Jenssen, H. P.

A. Cassanho, H. P. Jenssen, M. A. Noginov, V. G. Ostroumov, G. Q. Sarkissian, I. A. Shcherbakov, and V. A. Smirnov, “New upconversion effects in RE3+-doped laser media,” in Advanced Solid-State Lasers, L. L. Chase and A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 300–305.

D. J. Simkin, J. Wang, and H. P. Jenssen, “Pump-probe measurement of the upconversion gain in Tm3+:YBF,” presented at the Optical Society of America Conference on Lasers and Electro-Optics, Anaheim, Calif., June 2–7, 1996, presentation CTuL43; D. J. Simkin, McGill University, Montreal, Quebec H3A 2K6, Canada (private communication).

Further information is available from H. P. Jenssen, of Center for Research and Education in Optics and Lasers, University of Central Florida (formerly of Massachusetts Institute of Technology), in a MIT internal report on spectroscopy of Tm- and Ho-doped BaY₂F₈.

Johnson, L. F.

Karapetyan, G. O.

V. I. Bilak, G. M. Zverev, G. O. Karapetyan, and A. M. Onishchenko, “Excitation energy transfer between trivalent rare-earth ions, stimulated by a radiation field,” JETP Lett. 14, 199–201 (1971).

Mak, A. A.

B. M. Antipenko, A. A. Mak, O. B. Raba, K. B. Seiranyan, and T. V. Uvarova, “New lasing transition in the Tm3+ ion,” Sov. J. Quantum Electron. 13, 558–560 (1983).
[CrossRef]

Meyn, J.-P.

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Concentration quenching and upconversion of neodymium ions in LaSc3(BO3)4 and GdVO4 crystals,” in Advanced Solid-State Lasers, B. H. T. Chai and S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C.1995), pp. 509–513.

Noginov, M. A.

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Concentration quenching and upconversion of neodymium ions in LaSc3(BO3)4 and GdVO4 crystals,” in Advanced Solid-State Lasers, B. H. T. Chai and S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C.1995), pp. 509–513.

A. Cassanho, H. P. Jenssen, M. A. Noginov, V. G. Ostroumov, G. Q. Sarkissian, I. A. Shcherbakov, and V. A. Smirnov, “New upconversion effects in RE3+-doped laser media,” in Advanced Solid-State Lasers, L. L. Chase and A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 300–305.

Onishchenko, A. M.

V. I. Bilak, G. M. Zverev, G. O. Karapetyan, and A. M. Onishchenko, “Excitation energy transfer between trivalent rare-earth ions, stimulated by a radiation field,” JETP Lett. 14, 199–201 (1971).

Ostroumov, V.

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Concentration quenching and upconversion of neodymium ions in LaSc3(BO3)4 and GdVO4 crystals,” in Advanced Solid-State Lasers, B. H. T. Chai and S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C.1995), pp. 509–513.

Ostroumov, V. G.

A. Cassanho, H. P. Jenssen, M. A. Noginov, V. G. Ostroumov, G. Q. Sarkissian, I. A. Shcherbakov, and V. A. Smirnov, “New upconversion effects in RE3+-doped laser media,” in Advanced Solid-State Lasers, L. L. Chase and A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 300–305.

Perlin, Yu. E.

B. M. Antipenko, R. V. Dumbravyanu, Yu. E. Perlin, O. B. Raba, and L. K. Sukhareva, “Spectroscopic aspects of the BaYb2F8 laser medium,” Opt. Spectrosc. 59, 3 (1985).

Privalova, T. A.

B. M. Antipenko, S. P. Voronin, and T. A. Privalova, “New laser channels of the Tm3+ ion,” Opt. Spectrosc. 68, 164–166 (1990).

Raba, O. B.

B. M. Antipenko, R. V. Dumbravyanu, Yu. E. Perlin, O. B. Raba, and L. K. Sukhareva, “Spectroscopic aspects of the BaYb2F8 laser medium,” Opt. Spectrosc. 59, 3 (1985).

B. M. Antipenko, A. A. Mak, O. B. Raba, K. B. Seiranyan, and T. V. Uvarova, “New lasing transition in the Tm3+ ion,” Sov. J. Quantum Electron. 13, 558–560 (1983).
[CrossRef]

Sarkissian, G. Q.

A. Cassanho, H. P. Jenssen, M. A. Noginov, V. G. Ostroumov, G. Q. Sarkissian, I. A. Shcherbakov, and V. A. Smirnov, “New upconversion effects in RE3+-doped laser media,” in Advanced Solid-State Lasers, L. L. Chase and A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 300–305.

Seiranyan, K. B.

B. M. Antipenko, A. A. Mak, O. B. Raba, K. B. Seiranyan, and T. V. Uvarova, “New lasing transition in the Tm3+ ion,” Sov. J. Quantum Electron. 13, 558–560 (1983).
[CrossRef]

Shcherbakov, I. A.

A. Cassanho, H. P. Jenssen, M. A. Noginov, V. G. Ostroumov, G. Q. Sarkissian, I. A. Shcherbakov, and V. A. Smirnov, “New upconversion effects in RE3+-doped laser media,” in Advanced Solid-State Lasers, L. L. Chase and A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 300–305.

Simkin, D. J.

D. J. Simkin, J. Wang, and H. P. Jenssen, “Pump-probe measurement of the upconversion gain in Tm3+:YBF,” presented at the Optical Society of America Conference on Lasers and Electro-Optics, Anaheim, Calif., June 2–7, 1996, presentation CTuL43; D. J. Simkin, McGill University, Montreal, Quebec H3A 2K6, Canada (private communication).

Smirnov, V. A.

A. Cassanho, H. P. Jenssen, M. A. Noginov, V. G. Ostroumov, G. Q. Sarkissian, I. A. Shcherbakov, and V. A. Smirnov, “New upconversion effects in RE3+-doped laser media,” in Advanced Solid-State Lasers, L. L. Chase and A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 300–305.

Sukhareva, L. K.

B. M. Antipenko, R. V. Dumbravyanu, Yu. E. Perlin, O. B. Raba, and L. K. Sukhareva, “Spectroscopic aspects of the BaYb2F8 laser medium,” Opt. Spectrosc. 59, 3 (1985).

Trash, R. J.

Uvarova, T. V.

B. M. Antipenko, A. A. Mak, O. B. Raba, K. B. Seiranyan, and T. V. Uvarova, “New lasing transition in the Tm3+ ion,” Sov. J. Quantum Electron. 13, 558–560 (1983).
[CrossRef]

Voronin, S. P.

B. M. Antipenko, S. P. Voronin, and T. A. Privalova, “New laser channels of the Tm3+ ion,” Opt. Spectrosc. 68, 164–166 (1990).

Wang, J.

D. J. Simkin, J. Wang, and H. P. Jenssen, “Pump-probe measurement of the upconversion gain in Tm3+:YBF,” presented at the Optical Society of America Conference on Lasers and Electro-Optics, Anaheim, Calif., June 2–7, 1996, presentation CTuL43; D. J. Simkin, McGill University, Montreal, Quebec H3A 2K6, Canada (private communication).

Zverev, G. M.

V. I. Bilak, G. M. Zverev, G. O. Karapetyan, and A. M. Onishchenko, “Excitation energy transfer between trivalent rare-earth ions, stimulated by a radiation field,” JETP Lett. 14, 199–201 (1971).

Zxang, X. X.

X. X. Zxang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

J. S. Chivian, W. E. Case, and E. E. Edden, “The photon avalanche: a new phenomenon in Pr3+ based infrared quantum counters,” Appl. Phys. Lett. 35, 124–125 (1979).
[CrossRef]

Compt. Rend. Acad. Sci. Paris B (1)

F. Auzel, “Compteur quantique par transfert d’energie entre de Yb3+ a Tm3+ dans un tungstate mixte et dans verre germanate,” Compt. Rend. Acad. Sci. Paris B 263, 819–821 (1966).

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

V. I. Bilak, G. M. Zverev, G. O. Karapetyan, and A. M. Onishchenko, “Excitation energy transfer between trivalent rare-earth ions, stimulated by a radiation field,” JETP Lett. 14, 199–201 (1971).

Opt. Spectrosc. (2)

B. M. Antipenko, R. V. Dumbravyanu, Yu. E. Perlin, O. B. Raba, and L. K. Sukhareva, “Spectroscopic aspects of the BaYb2F8 laser medium,” Opt. Spectrosc. 59, 3 (1985).

B. M. Antipenko, S. P. Voronin, and T. A. Privalova, “New laser channels of the Tm3+ ion,” Opt. Spectrosc. 68, 164–166 (1990).

Phys. Rev. B (1)

X. X. Zxang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995).
[CrossRef]

Sov. J. Quantum Electron. (1)

B. M. Antipenko, A. A. Mak, O. B. Raba, K. B. Seiranyan, and T. V. Uvarova, “New lasing transition in the Tm3+ ion,” Sov. J. Quantum Electron. 13, 558–560 (1983).
[CrossRef]

Other (5)

Yu. P. Chukova, Anti-Stokes Luminescence and Its New Potential Applications (Sovetskoe Radio, Moscow, 1980), p. 74.

D. J. Simkin, J. Wang, and H. P. Jenssen, “Pump-probe measurement of the upconversion gain in Tm3+:YBF,” presented at the Optical Society of America Conference on Lasers and Electro-Optics, Anaheim, Calif., June 2–7, 1996, presentation CTuL43; D. J. Simkin, McGill University, Montreal, Quebec H3A 2K6, Canada (private communication).

Further information is available from H. P. Jenssen, of Center for Research and Education in Optics and Lasers, University of Central Florida (formerly of Massachusetts Institute of Technology), in a MIT internal report on spectroscopy of Tm- and Ho-doped BaY₂F₈.

V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Concentration quenching and upconversion of neodymium ions in LaSc3(BO3)4 and GdVO4 crystals,” in Advanced Solid-State Lasers, B. H. T. Chai and S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C.1995), pp. 509–513.

A. Cassanho, H. P. Jenssen, M. A. Noginov, V. G. Ostroumov, G. Q. Sarkissian, I. A. Shcherbakov, and V. A. Smirnov, “New upconversion effects in RE3+-doped laser media,” in Advanced Solid-State Lasers, L. L. Chase and A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 300–305.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Energy-level diagram and main population processes in Tm:Yb:BaY2F8: (1) absorption, (2) energy transfer, (3) Yb–Tm upconversion, (4) interaction of excited Tm ions, and (5) cross relaxation; small arrows denote multiphonon relaxation. (b) Simplified schemes for resonant excited state-absorption at 706 nm (left) and resonant energy-transfer upconversion populating the  1D2 level (right).

Fig. 2
Fig. 2

Absorption spectrum of Yb in BaY2F8 (solid curve); (○), excitation spectrum of Yb luminescence registered at 1014 nm; (△) excitation spectrum of  1D2 luminescence in Tm:Yb:BaY2F8 registered at 450 nm. All spectra were taken at Ec.

Fig. 3
Fig. 3

Visible upconversion luminescence of Tm in Tm(0.5%):Yb(50%):BaY2F8 under 914-nm excitation: (a) transition  1P03H6, (b) transitions  1P03F4 and  1D23H6, (c) transitions  1D23F4 and  1G43H6 (trace 1, intense pumping; 2000 W/cm2; trace 2, relatively weak excitation, 200 W/cm2), (d) transition  1G43F4, (e) transition  3F33H6, (f) transitions  1D23F2,3 and  3H43H6, and (g) transition  3H43H6 [spectrum of Fig. 3(f) is taken at higher pumping density than that of Fig. 3(e); at relatively weak excitation,  1D23F2,3 luminescence is practically not seen]. The  1P03H6 and  1D23F2,3 spectra are not polarized. All other spectra are taken at polarization Ec.

Fig. 4
Fig. 4

Experimental dependencies of emission intensity versus absorbed pumping density for different energy levels in Tm(0.5%):Yb(50%):BaY2F8 at 914-nm excitation: (a)  2F5/2 Yb, (b)  3F4 Tm, (c)  3H4 Tm, (d)  1G4 Tm, (e)  1D2 Tm, and (f)  3P0 Tm.

Fig. 5
Fig. 5

Decay curves of Yb luminescence (traces 1–3) and  3F43H6 Tm luminescence (trace 4) after excitation of the crystal with a long light pulse at λ=914 nm: (1) single-Yb-doped crystal, τYb=2.9 ms; (2) Tm(0.5%):Yb(50%):BaY2F8, weak excitation (1 W/cm2), τYb,Tmeff=0.65 ms; (3) Tm(0.5%):Yb(50%):BaY2F8, strong excitation (2500 W/cm2), effective decay time is equal to 0.35 ms; (4)  3F4 Tm luminescence in Tm(0.5%):Yb(50%):BaY2F8, strong excitation (2500 W/cm2).

Fig. 6
Fig. 6

Decay rate of  3H4 Tm luminescence (λ=823.8 nm) versus Yb concentration: (solid squares) Tm=1%, (open square) Tm=0.5%, and (triangle) calculation based on the measurements done in Tm=1% doped samples. The excitation wavelength is λ=776.7 nm.

Fig. 7
Fig. 7

Dependence of  1G4 inverse decay time on Yb concentration at direct excitation of Tm:Yb:BaY2F8 with 5-ms pulses at λ=476.5 nm.

Fig. 8
Fig. 8

Buildup luminescence kinetics of the levels  3F4 Tm (1, open diamonds),  3H4 Tm (2, shaded circles), and  2F5/2 Yb (3, closed squares) under square-pulsed excitation of Tm(0.5%):Yb(50%):BaY2F8 at λ=914 nm. Crosses (4) represent the product of  3F4 Tm and  2F5/2 Yb excited-state concentrations. (In (a) and (b), crosses practically almost overlap diamonds): (a) weak excitation (<1 W/cm3), (b) moderate excitation (1020 W/cm3), and (c) strong excitation (2500 W/cm3).

Fig. 9
Fig. 9

Luminescence buildup kinetics (circles) of (a)  3F4 Tm, (b)  2F5/2 Yb, (c)  3H4 Tm, (d)  3F3 Tm, (e)  1G4 Tm, (f)  1D2 Tm, and (g)  3P0 Tm under intense (2500 W/cm3) steplike excitation of Tm(0.5%):Yb(50%):BaY2F8 at λ=914 nm. Triangles in (c) represent the product of the  3F4 Tm and  2F5/2 Yb excited-state concentrations.

Fig. 10
Fig. 10

Dependence of  1G4 (squares) and  1D2 (triangles) upconversion luminescence on Yb concentration at 914-nm excitation. Solid squares and triangles correspond to Tm concentration equal to 1%. The open square and triangle represent the crystal with Tm concentration equal to 0.5%. All data correspond to the same absorbed pumping density, 2500 W/cm3.

Fig. 11
Fig. 11

Excitation spectrum of  1D2 luminescence.

Fig. 12
Fig. 12

Absorption cross section of Tm in BaY2F8 (Eb).

Fig. 13
Fig. 13

Dependence of  1D2 Tm upconversion luminescence on Yb concentration at 706-nm excitation: (circles) Tm=1%; (square) Tm=0.5%.

Tables (1)

Tables Icon

Table 1 Experimental and Predicted Slopes of the Dependencies Log(Emission Intensity) versus Log(Pumping Density) for Different Energy Levels in Tm(0.5%):Yb(50%):BaY2F8 at Relatively Weak 914-nm Excitation

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

dn 3H4dt=-n 3H4τ 3H4-β 3H4 n 3H4 n 3H6-γTmYbn 3H4 n 2F7/2+αn 3F4 n 2F5/2,
dn 3F4dt=-n 3F4τ 3F4-αn 3F4 n 2F5/2+γYbTmn 2F5/2 n 3H6+2β 3H4 n 3H4 n 3H6,
dn 2F5/2dt=PKabshνsn 2F7/2-n 2F5/2τ 2F5/2-αn 3F4 n 2F5/2-γYbTmn 2F5/2 n 3H6+γTmYbn 3H4 n 2F7/2,
NTm=n 3H6+n 3F4+n 3H4,
NYb=n 2F7/2+n 2F5/2,
η 3F43H4=β 3H4 n 3H61τ 3H4+β 3H4 n 3H6+γTmYbn 2F7/2,
η 3F42F5/2=γTmYbn 2F7/21τ 3H4+β 3H4 n 3H6+γTmYbn 2F7/2,
dn 3F4dt=-n 3F4τ 3F4-αn 3F4 n 2F5/2 (1-2η 3H43F4)+γYbTmn 2F5/2 (NTm-n 3F4),
dn 2F5/2dt=PKabshνsNYb-n 2F5/2τ 2F5/2-αn 3F4 n 2F5/2 (1-η 3H42F5/2)-γYbTmn 2F5/2 (NTm-n 3F4).
n 3F4st.st=PhνKabs2τ 2F5/2-τ 2F5/2effτ 2F5/2τ 3F4=1.32×1020cm-3.

Metrics