Abstract

Real-time linear spectral interference measurements of ultrashort pulses are shown experimentally. The technique involves measurements of the two-dimensional interference pattern of the spectral interference between a reference and a signal pulse propagating at an angle with respect to each other. No postprocessing is needed to extract the spectral phase difference between the two pulses. Quadratic spectral phase distortions as well as spectral phase discontinuities are measured. The method is applicable to single-shot measurements of ultraweak pulses and is useful for identification of the critical adjustments of ultrashort pulse shapers and compressors.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
    [CrossRef]
  2. J. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, Appl. Opt. 24, 1270 (1985).
    [CrossRef]
  3. D. J. Kane and R. Trebino, Opt. Lett. 18, 823 (1993).
    [CrossRef] [PubMed]
  4. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
    [CrossRef]
  5. T. Tsang, M. A. Krumbügel, K. W. DeLong, D. N. Fittinghoff, and R. Trebino, Opt. Lett. 21, 1381 (1996).
    [CrossRef] [PubMed]
  6. K. C. Chu, J. P. Heritage, R. S. Grant, K. X. Liu, A. Dienes, W. E. White, and A. Sullivan, Opt. Lett. 20, 904 (1995).
    [CrossRef] [PubMed]
  7. K. C. Chu, J. P. Heritage, R. S. Grant, and W. E. White, Opt. Lett. 21, 1842 (1996).
    [CrossRef] [PubMed]
  8. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, Opt. Lett. 21, 884 (1996).
    [CrossRef] [PubMed]
  9. C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).
  10. J. Piasecki, B. Colombeau, M. Vampouille, C. Froehly, and J. A. Arnaud, Appl. Opt. 19, 3749 (1980).
    [CrossRef] [PubMed]
  11. L. Lepetit, G. Chériaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  12. A. P. Kovács, K. Osvay, Zs. Bor, and R. Szipöcs, Opt. Lett. 20, 788 (1995).
    [CrossRef]
  13. K. Misawa and T. Kobayashi, Opt. Lett. 20, 1550 (1995).
    [CrossRef] [PubMed]
  14. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
    [CrossRef]
  15. A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
    [CrossRef]

1996 (3)

1995 (5)

1993 (2)

1992 (1)

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

1985 (1)

1980 (1)

1973 (1)

C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

1966 (1)

M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
[CrossRef]

Arnaud, J. A.

Bor, Zs.

Bowie, J. L.

Chériaux, G.

Chu, K. C.

Colombeau, B.

DeLong, K. W.

Diels, J. M.

Dienes, A.

Fittinghoff, D. N.

Fontaine, J. J.

Froehly, C.

Giordmaine, J. A.

M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
[CrossRef]

Grant, R. S.

Heritage, J. P.

Jennings, R. T.

Joffre, M.

Kaiser, W.

M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
[CrossRef]

Kane, D. J.

Kobayashi, T.

Kovács, A. P.

Krumbügel, M. A.

Lacourt, A.

C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

Leaird, D. E.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Lepetit, L.

Liu, K. X.

Maier, M.

M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
[CrossRef]

McMichael, I. C.

Misawa, K.

Osvay, K.

Paek, E. G.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Piasecki, J.

Reitze, D. H.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Simoni, F.

Sullivan, A.

Sweetser, J. N.

Szipöcs, R.

Trebino, R.

Tsang, T.

Vampouille, M.

Vienot, J. C.

C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

Walmsley, I. A.

Weiner, A. M.

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

White, W. E.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

J. Opt. (Paris) (1)

C. Froehly, A. Lacourt, and J. C. Vienot, J. Opt. (Paris) 4, 183 (1973).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

M. Maier, W. Kaiser, and J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
[CrossRef]

Prog. Quantum Electron. (1)

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement for real-time SSI measurements. The reference and the signal pulses propagate at an angle 2θ with respect to each other. The spectra of the two pulses interfere at the focal plane of the cylindrical lens, where a CCD matrix is placed.

Fig. 2
Fig. 2

Interference pattern of the spectrally dispersed signal and the reference pulses with no spectral phase distortion. (a) No delay between the pulses. (b) Delay of 333 fs between the pulses. (c) Delay of -333 fs between the pulses.

Fig. 3
Fig. 3

Interference pattern of the spectrally dispersed signal and the reference pulses when optical glasses were inserted in the signal beam. (a) 5.72 cm of fused-silica glass; no delay between the pulses. The parabolic fringes correspond to the quadratic dispersion of the glass. (b) Same as (a), with a delay of 333 fs between the pulses. (c) 28.28 cm of BK-7 glass; no delay between the pulses.

Fig. 4
Fig. 4

Measurements of a π spectral jump. (a) Spectral phase jump resulting from a π discontinuity in the spectral phase. (b) A π jump and an additional time delay of half of the spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(x, y)=|Eref(xω)exp[iϕref(xω)]×exp[ik(xω)(f cos θ+y sin θ)]A(y)+Esig(xω)exp[iϕsig(xω)]×exp[ikx(f cos θ-y sin θ)]A(y)|2=A2(y){Eref2(xω)+Esig2(xω)+2Eref(xω)Esig(xω)cos[ϕsig(xω)-ϕref(xω)-2k(xω)y sin θ]}.

Metrics