Abstract

We investigate photorefractive media for which quasi-stabilized ionic gratings can be used to prolong readout lifetime. We use coupled-transport-mode theory to describe the coevolution of photorefractive gratings that arise from free-electron transport and ionic transport. We evaluate in detail the differences between low-temperature and high-temperature recording for typical conditions required by multiplex holography. We provide general normalized examples for simple diffusion transport and specific examples for photovoltaic LiNbO3. We introduce a common formalism to compare widely varying results present in the literature and to guide the materials and system development processes.

© 1997 Optical Society of America

Full Article  |  PDF Article
Related Articles
Theory of complementary holograms arising from electron–hole transport in photorefractive media

M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube
J. Opt. Soc. Am. B 7(12) 2329-2338 (1990)

Comparison of single- and two-species models of electron–hole transport in photorefractive media

M. C. Bashaw, T.-P. Ma, and R. C. Barker
J. Opt. Soc. Am. B 9(9) 1666-1672 (1992)

Theory of two-center transport in photorefractive media for low-intensity, continuous-wave illumination in the quasi-steady-state limit

M. C. Bashaw, M. Jeganathan, and L. Hesselink
J. Opt. Soc. Am. B 11(9) 1743-1757 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (83)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription