Abstract

Absolute wave numbers with a typical uncertainty of 1 MHz (95% confidence) were measured for 102 hyperfine-structure components of  127I2. The data cover the range 560 to 656 nm with no gaps larger than 50 cm-1. The spectra were observed by use of Doppler-free frequency-modulation spectroscopy with a tunable cw laser. The laser was locked to selected iodine components, and its wave number was measured with a high-precision Fabry–Perot wavemeter. The accuracy of the results is confirmed by the good agreement of nine of the lines with previous results from other laboratories. These measurements provide a well-distributed set of precise reference lines for this spectral region.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molécule d’Iode entre 14800–20000 cm-1 (Editions du Centre National de la Research Scientifique, Paris, 1978).
  2. S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
    [CrossRef]
  3. T. J. Quinn, “Mise en pratique of the definition of the metre (1992),” Metrologia 30, 523–541 (1993).
    [CrossRef]
  4. L. Hlousek and W. M. Fairbank, “High-accuracy wave-number measurements in molecular iodine,” Opt. Lett. 8, 322–323 (1983).
    [CrossRef] [PubMed]
  5. P. Juncar, J. Pinard, J. Hamon, and A. Chartier, “Absolute determination of the wavelengths of the sodium D1 and D2 lines by using a cw tunable dye laser stabilized on iodine,” Metrologia 17, 77–79 (1981).
    [CrossRef]
  6. D. Shiner, J. M. Gilligan, B. M. Cook, and W. Lichten, “H2, D2, and HD ionization potentials by accurate calibration of several iodine lines,” Phys. Rev. A 47, 4042–4045 (1993).
    [CrossRef] [PubMed]
  7. R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
    [CrossRef]
  8. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [CrossRef]
  9. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  10. H. P. Layer, “A portable iodine stabilized helium–neon laser,” IEEE Trans. Instrum. Meas. IM-29, 358–361 (1980).
    [CrossRef]
  11. C. J. Sansonetti, “Precise laser wavelength measurements: what can we learn from classical spectroscopy?” in Advances in Laser Science IV, J. L. Gole, D. F. Heller, M. Lapp, and W. C. Stwalley, eds. (American Institute of Physics, New York, 1988), pp. 548–553.
  12. D. A. Jennings, C. R. Pollock, F. R. Petersen, R. E. Drullinger, K. M. Evenson, J. S. Wells, J. L. Hall, and H. P. Layer, “Direct frequency measurement of the I2-stabilized He–Ne 473-THz (633-nm) laser,” Opt. Lett. 8, 136–138 (1983).
    [CrossRef] [PubMed]
  13. J. D. Gillaspy and C. J. Sansonetti, “Absolute wavelength determinations in molecular tellurium: new reference lines for precision laser spectroscopy,” J. Opt. Soc. Am. B 8, 2414–2419 (1991).
    [CrossRef]
  14. S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
    [CrossRef]
  15. M. Kroll, “Hyperfine structure of the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
    [CrossRef]
  16. G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters (Wiley, New York, 1978), p. 319.
  17. W. Ubachs, Free University of Amsterdam, Amsterdam, The Netherlands (private communication, 1995).

1994 (1)

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
[CrossRef]

1993 (2)

D. Shiner, J. M. Gilligan, B. M. Cook, and W. Lichten, “H2, D2, and HD ionization potentials by accurate calibration of several iodine lines,” Phys. Rev. A 47, 4042–4045 (1993).
[CrossRef] [PubMed]

T. J. Quinn, “Mise en pratique of the definition of the metre (1992),” Metrologia 30, 523–541 (1993).
[CrossRef]

1991 (1)

1985 (1)

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

1983 (3)

1981 (2)

P. Juncar, J. Pinard, J. Hamon, and A. Chartier, “Absolute determination of the wavelengths of the sodium D1 and D2 lines by using a cw tunable dye laser stabilized on iodine,” Metrologia 17, 77–79 (1981).
[CrossRef]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

1980 (1)

H. P. Layer, “A portable iodine stabilized helium–neon laser,” IEEE Trans. Instrum. Meas. IM-29, 358–361 (1980).
[CrossRef]

1979 (1)

S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

1969 (1)

M. Kroll, “Hyperfine structure of the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
[CrossRef]

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Bönsch, G.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
[CrossRef]

Box, G. E. P.

G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters (Wiley, New York, 1978), p. 319.

Chartier, A.

P. Juncar, J. Pinard, J. Hamon, and A. Chartier, “Absolute determination of the wavelengths of the sodium D1 and D2 lines by using a cw tunable dye laser stabilized on iodine,” Metrologia 17, 77–79 (1981).
[CrossRef]

Cook, B. M.

D. Shiner, J. M. Gilligan, B. M. Cook, and W. Lichten, “H2, D2, and HD ionization potentials by accurate calibration of several iodine lines,” Phys. Rev. A 47, 4042–4045 (1993).
[CrossRef] [PubMed]

Dickopf, S.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
[CrossRef]

Drullinger, R. E.

Evenson, K. M.

Fairbank, W. M.

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molécule d’Iode entre 14800–20000 cm-1 (Editions du Centre National de la Research Scientifique, Paris, 1978).

Gillaspy, J. D.

Gilligan, J. M.

D. Shiner, J. M. Gilligan, B. M. Cook, and W. Lichten, “H2, D2, and HD ionization potentials by accurate calibration of several iodine lines,” Phys. Rev. A 47, 4042–4045 (1993).
[CrossRef] [PubMed]

Grieser, R.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
[CrossRef]

Hall, J. L.

Hamon, J.

P. Juncar, J. Pinard, J. Hamon, and A. Chartier, “Absolute determination of the wavelengths of the sodium D1 and D2 lines by using a cw tunable dye laser stabilized on iodine,” Metrologia 17, 77–79 (1981).
[CrossRef]

Hlousek, L.

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Huber, G.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
[CrossRef]

Hunter, J. S.

G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters (Wiley, New York, 1978), p. 319.

Hunter, W. G.

G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters (Wiley, New York, 1978), p. 319.

Jennings, D. A.

Juncar, P.

P. Juncar, J. Pinard, J. Hamon, and A. Chartier, “Absolute determination of the wavelengths of the sodium D1 and D2 lines by using a cw tunable dye laser stabilized on iodine,” Metrologia 17, 77–79 (1981).
[CrossRef]

Klein, R.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
[CrossRef]

Kroll, M.

M. Kroll, “Hyperfine structure of the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
[CrossRef]

Layer, H. P.

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Lichten, W.

D. Shiner, J. M. Gilligan, B. M. Cook, and W. Lichten, “H2, D2, and HD ionization potentials by accurate calibration of several iodine lines,” Phys. Rev. A 47, 4042–4045 (1993).
[CrossRef] [PubMed]

Luc, P.

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molécule d’Iode entre 14800–20000 cm-1 (Editions du Centre National de la Research Scientifique, Paris, 1978).

Merz, P.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
[CrossRef]

Nicolaus, A.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
[CrossRef]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Petersen, F. R.

Pinard, J.

P. Juncar, J. Pinard, J. Hamon, and A. Chartier, “Absolute determination of the wavelengths of the sodium D1 and D2 lines by using a cw tunable dye laser stabilized on iodine,” Metrologia 17, 77–79 (1981).
[CrossRef]

Pollock, C. R.

Quinn, T. J.

T. J. Quinn, “Mise en pratique of the definition of the metre (1992),” Metrologia 30, 523–541 (1993).
[CrossRef]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Sansonetti, C. J.

J. D. Gillaspy and C. J. Sansonetti, “Absolute wavelength determinations in molecular tellurium: new reference lines for precision laser spectroscopy,” J. Opt. Soc. Am. B 8, 2414–2419 (1991).
[CrossRef]

C. J. Sansonetti, “Precise laser wavelength measurements: what can we learn from classical spectroscopy?” in Advances in Laser Science IV, J. L. Gole, D. F. Heller, M. Lapp, and W. C. Stwalley, eds. (American Institute of Physics, New York, 1988), pp. 548–553.

Schnatz, H.

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
[CrossRef]

Shiner, D.

D. Shiner, J. M. Gilligan, B. M. Cook, and W. Lichten, “H2, D2, and HD ionization potentials by accurate calibration of several iodine lines,” Phys. Rev. A 47, 4042–4045 (1993).
[CrossRef] [PubMed]

Ubachs, W.

W. Ubachs, Free University of Amsterdam, Amsterdam, The Netherlands (private communication, 1995).

Wells, J. S.

Appl. Phys. B (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

H. P. Layer, “A portable iodine stabilized helium–neon laser,” IEEE Trans. Instrum. Meas. IM-29, 358–361 (1980).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (Paris) (1)

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[CrossRef]

Metrologia (2)

P. Juncar, J. Pinard, J. Hamon, and A. Chartier, “Absolute determination of the wavelengths of the sodium D1 and D2 lines by using a cw tunable dye laser stabilized on iodine,” Metrologia 17, 77–79 (1981).
[CrossRef]

T. J. Quinn, “Mise en pratique of the definition of the metre (1992),” Metrologia 30, 523–541 (1993).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

D. Shiner, J. M. Gilligan, B. M. Cook, and W. Lichten, “H2, D2, and HD ionization potentials by accurate calibration of several iodine lines,” Phys. Rev. A 47, 4042–4045 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Kroll, “Hyperfine structure of the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
[CrossRef]

Rev. Phys. Appl. (1)

S. Gerstenkorn and P. Luc, “Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy,” Rev. Phys. Appl. 14, 791–794 (1979).
[CrossRef]

Z. Phys. A (1)

R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A 342, 147–150 (1994).
[CrossRef]

Other (4)

C. J. Sansonetti, “Precise laser wavelength measurements: what can we learn from classical spectroscopy?” in Advances in Laser Science IV, J. L. Gole, D. F. Heller, M. Lapp, and W. C. Stwalley, eds. (American Institute of Physics, New York, 1988), pp. 548–553.

S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molécule d’Iode entre 14800–20000 cm-1 (Editions du Centre National de la Research Scientifique, Paris, 1978).

G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters (Wiley, New York, 1978), p. 319.

W. Ubachs, Free University of Amsterdam, Amsterdam, The Netherlands (private communication, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental apparatus for observation of Doppler-free absorption lines in molecular iodine.

Fig. 2
Fig. 2

Signal-processing schematic for FM spectroscopy and laser locking to iodine resonances.

Fig. 3
Fig. 3

Spectrum of the transition P80 (15–2) at 16 917 cm-1, a typical 15-component hyperfine structure.

Fig. 4
Fig. 4

Spectrum of the transition R47 (9–3) at 16 130 cm-1, a typical 21-component hyperfine structure.

Fig. 5
Fig. 5

Overlapping hyperfine structures at 16 254 cm-1 that illustrate the codes used in the comments of Table 1.

Fig. 6
Fig. 6

Deviations of previous precise measurements from the present results (previous measurement - this work). The shaded area for each line represents the uncertainty of the present results. For comparison with the previous measurements the uncertainty in this figure is shown at the one standard deviation level (68% confidence).

Fig. 7
Fig. 7

Deviations of the lines measured with lower precision by Hlousek and Fairbank4 from the present results. The uncertainty of Hlousek and Fairbank is 6 MHz. The typical uncertainty (95% confidence level) for the present work is 1 MHz, indicated by the shaded region in the figure.

Tables (1)

Tables Icon

Table 1 Measured Wave Numbers of Hyperfine Components in I2

Metrics