Abstract

The characteristics of an interferometric system based on two-wave mixing at 1.06 µm in photorefractive InP:Fe under an applied field for the detection of ultrasonic motion of a scattering surface are described. A theoretical analysis of possible configurations for the detection of small phase modulation in the undepleted-pump approximation is presented. Experimental assessment of the device for both cw and pulse regimes is performed: The sensitivity, the étendue, the response time, and the behavior under ambient vibrations or moving inspected samples are provided. This adaptive device presents many features appropriate for industrial inspection and compares advantageously with the passive confocal Fabry–Perot device that is now widely used.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription