Abstract

The characteristics of an interferometric system based on two-wave mixing at 1.06 µm in photorefractive InP:Fe under an applied field for the detection of ultrasonic motion of a scattering surface are described. A theoretical analysis of possible configurations for the detection of small phase modulation in the undepleted-pump approximation is presented. Experimental assessment of the device for both cw and pulse regimes is performed: The sensitivity, the étendue, the response time, and the behavior under ambient vibrations or moving inspected samples are provided. This adaptive device presents many features appropriate for industrial inspection and compares advantageously with the passive confocal Fabry–Perot device that is now widely used.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Scruby and L. E. Drain, Laser-Ultrasonics: Techniques and Applications (Hilger, Bristol, UK, 1990).
  2. J. P. Monchalin, “Progress towards the application of laser-ultrasonics in industry,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12A, p. 495.
  3. J. P. Monchalin and R. Héon, “Laser ultrasonic generation and optical detection with a confocal Fabry–Pérot interferometer,” Mater. Eval. 44, 1231 (1986).
  4. F. M. Davidson and L. Boutsikaris, “Homodyne detection using photorefractive materials as beamsplitters,” Opt. Eng. 29, 369 (1990).
    [CrossRef]
  5. R. K. Ing and J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233 (1991).
    [CrossRef]
  6. A. Blouin and J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932 (1994).
    [CrossRef]
  7. D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high-bandwidth, auto-compensating, laser-based ultrasound detectors,” in Materials Science Forum (Transtec, Zurich, Switzerland, 1996), Vol. 210, Part 1, p. 425.
  8. M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
    [CrossRef]
  9. P. Delaye, A. Blouin, D. Drolet, and J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251 (1995).
    [CrossRef]
  10. J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485 (1986).
    [CrossRef] [PubMed]
  11. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979); “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961 (1979).
    [CrossRef]
  12. M. Kaminska, J. M. Parsey, J. Lagowski, and H. C. Gatos, “Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2,” Appl. Phys. Lett. 41, 989 (1982).
    [CrossRef]
  13. H. Rajbenbach, J. M. Verdiell, and J. P. Huignard, “Visualization of electrical domains in semi-insulating GaAs:Cr and potential use for variable grating mode operation,” Appl. Phys. Lett. 53, 541 (1988).
    [CrossRef]
  14. G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, “Mobility–lifetime product of photoexcited electrons in GaAs,” Appl. Phys. Lett. 56, 364 (1990).
    [CrossRef]
  15. F. M. Davidson and C. T. Field, “Coherent homodyne optical communication receivers with photorefractive optical beam combiners,” J. Lightwave Technol. 12, 1207 (1994).
    [CrossRef]
  16. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588 (1966).
    [CrossRef] [PubMed]
  17. P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
    [CrossRef]
  18. G. C. Valley, S. W. McCahon, and M. B. Klein, “Photorefractive measurement of photoionization and recombination cross sections in InP:Fe,” J. Appl. Phys. 64, 6684 (1988).
    [CrossRef]
  19. G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
    [CrossRef]
  20. P. Delaye, P. U. Halter, and G. Roosen, “Thermally induced hole–electron competition in photorefractive InP:Fe due to the Fe2+ excited state,” J. Opt. Soc. Am. B 7, 2268 (1990).
    [CrossRef]
  21. R. S. Rana, D. D. Nolte, R. Stelt, and E. M. Monberg, “Temperature dependence of the photorefractive effect in InP:Fe: role of multiple defects,” J. Opt. Soc. Am. B 9, 1614 (1992).
    [CrossRef]
  22. J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4¯3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
    [CrossRef]
  23. T. Chang, A. Chiou, and P. Yeh, “Cross-polarization photorefractive two-beam coupling in gallium arsenide,” J. Opt. Soc. Am. B 5, 1724 (1988).
    [CrossRef]
  24. P. Delaye, K. Jarasiunas, J. C. Launay, and G. Roosen, “Picosecond investigation of photorefractive and free carrier gratings in GaAs:EL2 and CdTe:V,” J. Phys. (France) III 3, 1291 (1993).
    [CrossRef]
  25. D. Drolet, A. Blouin, C. Néron, and J. P. Monchalin, “Specifications of an ultrasonic receiver based on two-wave mixing in photorefractive GaAs implemented in laser-ultrasonic system,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1996), Vol. 15, p. 637.
  26. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312 (1986).
    [CrossRef]
  27. Ph. Refrégiér, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
    [CrossRef]

1995 (2)

P. Delaye, A. Blouin, D. Drolet, and J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251 (1995).
[CrossRef]

P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
[CrossRef]

1994 (2)

F. M. Davidson and C. T. Field, “Coherent homodyne optical communication receivers with photorefractive optical beam combiners,” J. Lightwave Technol. 12, 1207 (1994).
[CrossRef]

A. Blouin and J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932 (1994).
[CrossRef]

1993 (1)

P. Delaye, K. Jarasiunas, J. C. Launay, and G. Roosen, “Picosecond investigation of photorefractive and free carrier gratings in GaAs:EL2 and CdTe:V,” J. Phys. (France) III 3, 1291 (1993).
[CrossRef]

1992 (1)

1991 (1)

R. K. Ing and J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

1990 (3)

F. M. Davidson and L. Boutsikaris, “Homodyne detection using photorefractive materials as beamsplitters,” Opt. Eng. 29, 369 (1990).
[CrossRef]

G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, “Mobility–lifetime product of photoexcited electrons in GaAs,” Appl. Phys. Lett. 56, 364 (1990).
[CrossRef]

P. Delaye, P. U. Halter, and G. Roosen, “Thermally induced hole–electron competition in photorefractive InP:Fe due to the Fe2+ excited state,” J. Opt. Soc. Am. B 7, 2268 (1990).
[CrossRef]

1989 (1)

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

1988 (4)

J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4¯3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
[CrossRef]

G. C. Valley, S. W. McCahon, and M. B. Klein, “Photorefractive measurement of photoionization and recombination cross sections in InP:Fe,” J. Appl. Phys. 64, 6684 (1988).
[CrossRef]

H. Rajbenbach, J. M. Verdiell, and J. P. Huignard, “Visualization of electrical domains in semi-insulating GaAs:Cr and potential use for variable grating mode operation,” Appl. Phys. Lett. 53, 541 (1988).
[CrossRef]

T. Chang, A. Chiou, and P. Yeh, “Cross-polarization photorefractive two-beam coupling in gallium arsenide,” J. Opt. Soc. Am. B 5, 1724 (1988).
[CrossRef]

1987 (1)

M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
[CrossRef]

1986 (3)

J. P. Monchalin and R. Héon, “Laser ultrasonic generation and optical detection with a confocal Fabry–Pérot interferometer,” Mater. Eval. 44, 1231 (1986).

J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485 (1986).
[CrossRef] [PubMed]

F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312 (1986).
[CrossRef]

1985 (1)

Ph. Refrégiér, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

1982 (1)

M. Kaminska, J. M. Parsey, J. Lagowski, and H. C. Gatos, “Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2,” Appl. Phys. Lett. 41, 989 (1982).
[CrossRef]

1966 (1)

Arnold, W.

M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
[CrossRef]

Betz, B.

M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
[CrossRef]

Blouin, A.

P. Delaye, A. Blouin, D. Drolet, and J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251 (1995).
[CrossRef]

A. Blouin and J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932 (1994).
[CrossRef]

Boutsikaris, L.

F. M. Davidson and L. Boutsikaris, “Homodyne detection using photorefractive materials as beamsplitters,” Opt. Eng. 29, 369 (1990).
[CrossRef]

Chang, T.

Chiou, A.

Davidson, F. M.

F. M. Davidson and C. T. Field, “Coherent homodyne optical communication receivers with photorefractive optical beam combiners,” J. Lightwave Technol. 12, 1207 (1994).
[CrossRef]

F. M. Davidson and L. Boutsikaris, “Homodyne detection using photorefractive materials as beamsplitters,” Opt. Eng. 29, 369 (1990).
[CrossRef]

de Montmorillon, L. A.

P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
[CrossRef]

Delaye, P.

P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, and J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251 (1995).
[CrossRef]

P. Delaye, K. Jarasiunas, J. C. Launay, and G. Roosen, “Picosecond investigation of photorefractive and free carrier gratings in GaAs:EL2 and CdTe:V,” J. Phys. (France) III 3, 1291 (1993).
[CrossRef]

P. Delaye, P. U. Halter, and G. Roosen, “Thermally induced hole–electron competition in photorefractive InP:Fe due to the Fe2+ excited state,” J. Opt. Soc. Am. B 7, 2268 (1990).
[CrossRef]

Drolet, D.

P. Delaye, A. Blouin, D. Drolet, and J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251 (1995).
[CrossRef]

Fabre, J. C.

J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4¯3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
[CrossRef]

Field, C. T.

F. M. Davidson and C. T. Field, “Coherent homodyne optical communication receivers with photorefractive optical beam combiners,” J. Lightwave Technol. 12, 1207 (1994).
[CrossRef]

Gatos, H. C.

M. Kaminska, J. M. Parsey, J. Lagowski, and H. C. Gatos, “Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2,” Appl. Phys. Lett. 41, 989 (1982).
[CrossRef]

Gravey, P.

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

Halter, P. U.

Hellwarth, R. W.

Héon, R.

J. P. Monchalin and R. Héon, “Laser ultrasonic generation and optical detection with a confocal Fabry–Pérot interferometer,” Mater. Eval. 44, 1231 (1986).

Huignard, J. P.

H. Rajbenbach, J. M. Verdiell, and J. P. Huignard, “Visualization of electrical domains in semi-insulating GaAs:Cr and potential use for variable grating mode operation,” Appl. Phys. Lett. 53, 541 (1988).
[CrossRef]

Ph. Refrégiér, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Ing, R. K.

R. K. Ing and J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

Jarasiunas, K.

P. Delaye, K. Jarasiunas, J. C. Launay, and G. Roosen, “Picosecond investigation of photorefractive and free carrier gratings in GaAs:EL2 and CdTe:V,” J. Phys. (France) III 3, 1291 (1993).
[CrossRef]

Jonathan, J. M. C.

J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4¯3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
[CrossRef]

F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole-electron competition in photorefractive gratings,” Opt. Lett. 11, 312 (1986).
[CrossRef]

Kaminska, M.

M. Kaminska, J. M. Parsey, J. Lagowski, and H. C. Gatos, “Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2,” Appl. Phys. Lett. 41, 989 (1982).
[CrossRef]

Klein, M. B.

G. C. Valley, S. W. McCahon, and M. B. Klein, “Photorefractive measurement of photoionization and recombination cross sections in InP:Fe,” J. Appl. Phys. 64, 6684 (1988).
[CrossRef]

Lagowski, J.

M. Kaminska, J. M. Parsey, J. Lagowski, and H. C. Gatos, “Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2,” Appl. Phys. Lett. 41, 989 (1982).
[CrossRef]

Launay, J. C.

P. Delaye, K. Jarasiunas, J. C. Launay, and G. Roosen, “Picosecond investigation of photorefractive and free carrier gratings in GaAs:EL2 and CdTe:V,” J. Phys. (France) III 3, 1291 (1993).
[CrossRef]

McCahon, S. W.

G. C. Valley, S. W. McCahon, and M. B. Klein, “Photorefractive measurement of photoionization and recombination cross sections in InP:Fe,” J. Appl. Phys. 64, 6684 (1988).
[CrossRef]

Monberg, E. M.

Monchalin, J. P.

P. Delaye, A. Blouin, D. Drolet, and J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251 (1995).
[CrossRef]

A. Blouin and J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932 (1994).
[CrossRef]

R. K. Ing and J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485 (1986).
[CrossRef] [PubMed]

J. P. Monchalin and R. Héon, “Laser ultrasonic generation and optical detection with a confocal Fabry–Pérot interferometer,” Mater. Eval. 44, 1231 (1986).

Nolte, D. D.

Ozkul, C.

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

Parsey, J. M.

M. Kaminska, J. M. Parsey, J. Lagowski, and H. C. Gatos, “Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2,” Appl. Phys. Lett. 41, 989 (1982).
[CrossRef]

Paul, M.

M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
[CrossRef]

Picoli, G.

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

Rajbenbach, H.

G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, “Mobility–lifetime product of photoexcited electrons in GaAs,” Appl. Phys. Lett. 56, 364 (1990).
[CrossRef]

H. Rajbenbach, J. M. Verdiell, and J. P. Huignard, “Visualization of electrical domains in semi-insulating GaAs:Cr and potential use for variable grating mode operation,” Appl. Phys. Lett. 53, 541 (1988).
[CrossRef]

Ph. Refrégiér, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Rana, R. S.

Refrégiér, Ph.

Ph. Refrégiér, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Roosen, G.

P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
[CrossRef]

P. Delaye, K. Jarasiunas, J. C. Launay, and G. Roosen, “Picosecond investigation of photorefractive and free carrier gratings in GaAs:EL2 and CdTe:V,” J. Phys. (France) III 3, 1291 (1993).
[CrossRef]

P. Delaye, P. U. Halter, and G. Roosen, “Thermally induced hole–electron competition in photorefractive InP:Fe due to the Fe2+ excited state,” J. Opt. Soc. Am. B 7, 2268 (1990).
[CrossRef]

J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4¯3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
[CrossRef]

Siegman, A. E.

Solymar, L.

Ph. Refrégiér, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Stelt, R.

Strohkendl, F. P.

Valley, G. C.

G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, “Mobility–lifetime product of photoexcited electrons in GaAs,” Appl. Phys. Lett. 56, 364 (1990).
[CrossRef]

G. C. Valley, S. W. McCahon, and M. B. Klein, “Photorefractive measurement of photoionization and recombination cross sections in InP:Fe,” J. Appl. Phys. 64, 6684 (1988).
[CrossRef]

Verdiell, J. M.

H. Rajbenbach, J. M. Verdiell, and J. P. Huignard, “Visualization of electrical domains in semi-insulating GaAs:Cr and potential use for variable grating mode operation,” Appl. Phys. Lett. 53, 541 (1988).
[CrossRef]

Vieux, V.

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

von Bardeleben, H. J.

G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, “Mobility–lifetime product of photoexcited electrons in GaAs,” Appl. Phys. Lett. 56, 364 (1990).
[CrossRef]

Yeh, P.

Appl. Opt. (1)

Appl. Phys. Lett. (7)

M. Paul, B. Betz, and W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569 (1987).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, and J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251 (1995).
[CrossRef]

M. Kaminska, J. M. Parsey, J. Lagowski, and H. C. Gatos, “Current oscillations in semi-insulating GaAs associated with field-enhanced capture of electrons by the major deep donor EL2,” Appl. Phys. Lett. 41, 989 (1982).
[CrossRef]

H. Rajbenbach, J. M. Verdiell, and J. P. Huignard, “Visualization of electrical domains in semi-insulating GaAs:Cr and potential use for variable grating mode operation,” Appl. Phys. Lett. 53, 541 (1988).
[CrossRef]

G. C. Valley, H. Rajbenbach, and H. J. von Bardeleben, “Mobility–lifetime product of photoexcited electrons in GaAs,” Appl. Phys. Lett. 56, 364 (1990).
[CrossRef]

R. K. Ing and J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

A. Blouin and J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932 (1994).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485 (1986).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

G. C. Valley, S. W. McCahon, and M. B. Klein, “Photorefractive measurement of photoionization and recombination cross sections in InP:Fe,” J. Appl. Phys. 64, 6684 (1988).
[CrossRef]

G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP:Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798 (1989).
[CrossRef]

Ph. Refrégiér, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving gratings: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

J. Lightwave Technol. (1)

F. M. Davidson and C. T. Field, “Coherent homodyne optical communication receivers with photorefractive optical beam combiners,” J. Lightwave Technol. 12, 1207 (1994).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. (France) III (1)

P. Delaye, K. Jarasiunas, J. C. Launay, and G. Roosen, “Picosecond investigation of photorefractive and free carrier gratings in GaAs:EL2 and CdTe:V,” J. Phys. (France) III 3, 1291 (1993).
[CrossRef]

Mater. Eval. (1)

J. P. Monchalin and R. Héon, “Laser ultrasonic generation and optical detection with a confocal Fabry–Pérot interferometer,” Mater. Eval. 44, 1231 (1986).

Opt. Commun. (2)

P. Delaye, L. A. de Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154 (1995).
[CrossRef]

J. C. Fabre, J. M. C. Jonathan, and G. Roosen, “4¯3m photorefractive materials in energy transfer experiments,” Opt. Commun. 65, 257 (1988).
[CrossRef]

Opt. Eng. (1)

F. M. Davidson and L. Boutsikaris, “Homodyne detection using photorefractive materials as beamsplitters,” Opt. Eng. 29, 369 (1990).
[CrossRef]

Opt. Lett. (1)

Other (5)

D. Drolet, A. Blouin, C. Néron, and J. P. Monchalin, “Specifications of an ultrasonic receiver based on two-wave mixing in photorefractive GaAs implemented in laser-ultrasonic system,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1996), Vol. 15, p. 637.

C. B. Scruby and L. E. Drain, Laser-Ultrasonics: Techniques and Applications (Hilger, Bristol, UK, 1990).

J. P. Monchalin, “Progress towards the application of laser-ultrasonics in industry,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12A, p. 495.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949 (1979); “Holographic storage in electrooptic crystals. II. Beam coupling—light amplification,” Ferroelectrics 22, 961 (1979).
[CrossRef]

D. M. Pepper, P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, and T. R. O’Meara, “Double-pumped conjugators and photo-induced EMF sensors: two novel, high-bandwidth, auto-compensating, laser-based ultrasound detectors,” in Materials Science Forum (Transtec, Zurich, Switzerland, 1996), Vol. 210, Part 1, p. 425.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Principle of phase demodulation by TWM in a photorefractive crystal: a phase-modulated signal beam Ed(0, t) and a pump beam Ip interfere inside the photorefractive crystal to produce an index-of-refraction grating: a local oscillator beam (LO) is diffracted by this grating and interferes with the transmitted phase-modulated signal beam to give a demodulated signal.

Fig. 2
Fig. 2

Photorefractive gain amplitude (■, real part; ●, imaginary part) as a function of the applied electric field.

Fig. 3
Fig. 3

Frequency response of the photorefractive beam mixer for three different applied electric fields: (●, 2.3 kV cm-1; ▼, 4.6 kV cm-1; ■, 7 kV cm-1). The experimental curves are normalized to their high-frequency values.

Fig. 4
Fig. 4

Kinetics of the transient energy transfer (solid curve) with its theoretical fit (dashed curve).

Fig. 5
Fig. 5

Theoretical (curve) and experimental (■) frequency-response curves for an applied electric field of 7 kV cm-1.

Fig. 6
Fig. 6

Demodulated signal standard deviation (■) as a function of the amplitude of the phase modulation; the straight line is a guide for the eye.

Fig. 7
Fig. 7

Schematic of the isotropic diffraction setup: BSC, Babinet–Soleil compensator.

Fig. 8
Fig. 8

Sensitivity factor as a function of the gain (curves calculated for a crystal thickness of 1 cm) for the various configurations: direct detection (solid curve), isotropic diffraction (dotted–dashed curve), and anisotropic diffraction (dashed curve).

Fig. 9
Fig. 9

Sensitivity (limit of detection) of the photorefractive beam mixer based on InP:Fe with an applied electric field (■) and with the CFP interferometer (▼). The bold curve shows the variation of the theoretical sensitivity of the CFP interferometer adjusted to fit the experimental curve. The results obtained with the photorefractive beam mixer where the pump beam issued from a multimode fiber are also shown (♦).

Fig. 10
Fig. 10

Normalized amplitude (■) of the demodulated signal and normalized measured phase shift (●) as a function of the Doppler frequency shift, with compensation of the induced phase shift for each Doppler shift. The curves are theoretical fits with a time constant τ=(1.1-0.8i)µs.

Fig. 11
Fig. 11

Normalized amplitude of the phase-demodulation signal as a function of the Doppler frequency shift, without compensation of the induced phase shift, for positive (■) and negative (●) applied electric fields. The curves represent theoretical fits with a time constant τ=(1.2-0.6i)µs.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

Ed(x, t)=exp-αx2Ed(0, 0){[exp(γx)-1]+exp[iφ(t)]},
Id(x, t)=exp(-αx)Id(0, 0)[exp(2γx)+2 exp(γx)sin(γx)φ(t)],
Ed(x, t)=exp-αx2exp(γx)Ed(0, 0)×τ0H(x, t)+0t H(x, T)dT,
H(x, t)=exp(γx)τ0×exp-tτ01F1γα, 1,exp(αx)-1exp(αx)tτ0,
Ed(x, t)=exp-αx2exp(γx)Ed(0, 0)
+0tτ0Edt(0, T)+Ed(0, T)
-Ed(0, 0)H(x, t-T)dT,
S=ηAId0hν(2φ)exp(-αx)exp(γx)sin γx,
N=2ηAId0hνΔf exp(-αx)exp(2γx)1/2,
S/N=2ηAId0hνΔfφ1/2 exp-αx2sin γx.
δl=λ4πhν2η1/2expαx2sin γx.
S/N=2ηAId0hνΔf1/2φ exp-αx2sin γx.
S=exp(-αx)Id(0, 0){exp(γx)cos(φL-γx)+φ(t)×[sin φL-exp(γx)sin(φL-γx)]},
S=exp(-αx)Id(0, 0)[cos(φL)+|exp(γx)-1|φ(t)].
S0=exp(-αx)Id(0, 0)4[exp(2γx)+1].
S/N=ηAId0hνΔf1/2φ exp-αx2exp(γx)-1[exp(2γx)+1]1/2.
EdS(x, t)=Ed(0, 0)exp[iφ(t)]exp-αx2,
EdP(x, t)=γxEd(0, 0)exp-αx2.
S=-2 exp(-αx)Id(0, 0){|γ|x cos[φ(t)+φL-φγ]},
S=2 exp(-αx)Id(0, 0)|γ|xφ(t).
S0=exp(-αx)Id(0, 0)2(|γ|2x2+1)
S/N=2ηAId0hνΔf1/2φ exp-αx2|γ|x(|γ|2x2+1)1/2.
EdS(x, t)=Ed(0, 0)2exp-αx2×(-{γx-exp[iφ(t)]}exp(iφE)+{γx+exp[iφ(t)]}),
EdP(x, t)=Ed(0, 0)2exp-αx2×({γx-exp[iφ(t)]}exp(iφE)+{γx+exp[iφ(t)]}),
S=-Id(0, 0)exp(-αx)((|γ|2x2-1)sin φE×sin φL+2|γ|x{cos φL cos[φ(t)-φγ]-sin φL×sin[φ(t)-φγ]cos φE}),
S=-Id(0, 0)exp(-αx)[(|γ|2x2-1)sin φE×sin φL+2|γ|x(cos φL cos φγ+sin φL×sin φγ cos φE)+2|γ|xφ(t)(cos φL sin φγ-sin φL cos φγ cos φE)].
tan φL=-cos φE cot φγ.
S=-Id(0, 0)exp(-αx)sin φE×sin φL(|γ|2x2-1-2|γ|x tan φE sin φγ)+2|γ|xφ(t)sin φγcos φL.
S=-2Id(0, 0)exp(-αx)|γ|xφ(t),
S/N=2ηAId0hνΔf1/2φ exp-αx2SF,
E1t=-1τ0E1-mEscτ0,
E10=-m0Esc1+iΔωτ0.
|E10|=m0|Esc|1-Im τ0|τ0|2+Δω-Im τ0|τ0|22|τ0|21/2.
φE10(Δω)-φE10(0)=-arctanΔω Re τ01-Δω Im τ0,
A=m0|Esc|1-Im τ0|τ0|21-Im τ0|τ0|2+Δω-Im τ0|τ0|22|τ0|2-Δω-Im τ0|τ0|2Im τ01-Im τ0|τ0|2+Δω-Im τ0|τ0|22|τ0|2.

Metrics