Abstract

Analysis and numerical simulations of the smoothing of the speckled illumination of a direct-drive inertial confinement fusion target are presented. In particular, the spatial spectrum of the integrated target fluence is compared across smoothing methods. Two categories of smoothing methods are considered. In one method spatially incoherent light is amplified and directed onto the target, whereas in the other the light is phase modulated and spectrally dispersed before being amplified and then focused through a random phase plate onto the target. The dependence of the smoothed spatial spectrum on the characteristics of phase modulation and dispersion is examined for both sinusoidal and more general phase modulation. It is shown that smoothing with nonsinusoidal phase modulation can result in spatial spectra that are substantially identical to that obtained with the incoherent light method in which random phase plates are present in both methods and identical beam divergence is assumed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
    [CrossRef]
  2. R. H. Lehmberg and S. P. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983).
    [CrossRef]
  3. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
    [CrossRef]
  4. R. H. Lehmberg and J. Goldhar, “Use of incoherence to produce smooth and controllable irradiation profiles with KrF fusion lasers,” Fusion Technology 11, 532–541 (1987).
  5. D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
    [CrossRef]
  6. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
    [CrossRef]
  7. D. Véron, G. Thiell, and C. Gouedard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
    [CrossRef]
  8. H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
    [CrossRef]
  9. H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993).
    [CrossRef]
  10. R. S. Craxton and S. Skupsky, “2D SSD and polarization wedges for OMEGA and the NIF,” Bull. Am. Phys. Soc. 40, 1826 (1995).
  11. J. E. Rothenberg, D. Eimerl, M. H. Key, and S. V. Weber, “Illumination uniformity requirements for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 162–169 (1995).
    [CrossRef]
  12. J. E. Rothenberg, “Two dimensional beam smoothing by spectral dispersion for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 634–644 (1995).
    [CrossRef]
  13. H. T. Powell, S. N. Dixit, and M. A. Henesian, “Beam smoothing capability of the Nova Laser,” Lawrence Livermore National Laboratory ICF Quarterly Report UCRL-LR-105821–91–1 (Lawrence Livermore National Laboratory, Livermore, Calif., 1990), Vol. 1, pp. 28–38.
  14. D. M. Pennington, M. A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, and T. L. Weiland, “Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 175–185 (1993).
    [CrossRef]
  15. K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993).
    [CrossRef]
  16. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3, 929–934 (1986).
    [CrossRef]
  17. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 164–168; 238–243.
  18. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics, J. C. Dainty ed., Springer-Verlag, New York, 1984), pp. 9–46.
  19. R. H. Lehmberg, “Spatial profile distortion of harmonically-converted partially-coherent light,” Opt. Commun. 130, 51–56 (1996).
    [CrossRef]
  20. M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluids B 2, 1007–1014 (1990).
    [CrossRef]
  21. Ref. 18, pp. 63–74.

1996 (1)

R. H. Lehmberg, “Spatial profile distortion of harmonically-converted partially-coherent light,” Opt. Commun. 130, 51–56 (1996).
[CrossRef]

1995 (3)

R. S. Craxton and S. Skupsky, “2D SSD and polarization wedges for OMEGA and the NIF,” Bull. Am. Phys. Soc. 40, 1826 (1995).

J. E. Rothenberg, D. Eimerl, M. H. Key, and S. V. Weber, “Illumination uniformity requirements for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 162–169 (1995).
[CrossRef]

J. E. Rothenberg, “Two dimensional beam smoothing by spectral dispersion for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 634–644 (1995).
[CrossRef]

1994 (1)

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

1993 (5)

D. Véron, G. Thiell, and C. Gouedard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
[CrossRef]

H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
[CrossRef]

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993).
[CrossRef]

D. M. Pennington, M. A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, and T. L. Weiland, “Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 175–185 (1993).
[CrossRef]

K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993).
[CrossRef]

1990 (1)

M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluids B 2, 1007–1014 (1990).
[CrossRef]

1989 (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

1988 (1)

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

1987 (1)

R. H. Lehmberg and J. Goldhar, “Use of incoherence to produce smooth and controllable irradiation profiles with KrF fusion lasers,” Fusion Technology 11, 532–541 (1987).

1986 (1)

1984 (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

1983 (1)

R. H. Lehmberg and S. P. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983).
[CrossRef]

Arinaga, S.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Ayral, H.

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

Azechi, H.

H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
[CrossRef]

Craxton, R. S.

R. S. Craxton and S. Skupsky, “2D SSD and polarization wedges for OMEGA and the NIF,” Bull. Am. Phys. Soc. 40, 1826 (1995).

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Dixit, S. N.

D. M. Pennington, M. A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, and T. L. Weiland, “Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 175–185 (1993).
[CrossRef]

Eimerl, D.

J. E. Rothenberg, D. Eimerl, M. H. Key, and S. V. Weber, “Illumination uniformity requirements for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 162–169 (1995).
[CrossRef]

Glendinning, S. G.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Goldhar, J.

R. H. Lehmberg and J. Goldhar, “Use of incoherence to produce smooth and controllable irradiation profiles with KrF fusion lasers,” Fusion Technology 11, 532–541 (1987).

Gouedard, C.

D. Véron, G. Thiell, and C. Gouedard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
[CrossRef]

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

Haan, S. W.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Hammel, B. A.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Henesian, M. A.

D. M. Pennington, M. A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, and T. L. Weiland, “Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 175–185 (1993).
[CrossRef]

Husson, D.

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

Jitsuno, T.

K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993).
[CrossRef]

H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
[CrossRef]

Kanabe, T.

H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
[CrossRef]

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993).
[CrossRef]

K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993).
[CrossRef]

Kato, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Key, M. H.

J. E. Rothenberg, D. Eimerl, M. H. Key, and S. V. Weber, “Illumination uniformity requirements for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 162–169 (1995).
[CrossRef]

Kilkenny, J. D.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Kitagawa, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Knauer, J. P.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Lauriou, J.

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

Lehmberg, R. H.

R. H. Lehmberg, “Spatial profile distortion of harmonically-converted partially-coherent light,” Opt. Commun. 130, 51–56 (1996).
[CrossRef]

R. H. Lehmberg and J. Goldhar, “Use of incoherence to produce smooth and controllable irradiation profiles with KrF fusion lasers,” Fusion Technology 11, 532–541 (1987).

R. H. Lehmberg and S. P. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983).
[CrossRef]

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Lindl, J. D.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluids B 2, 1007–1014 (1990).
[CrossRef]

Martin, O.

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

Martinez, O. E.

Meyer, B.

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

Mima, K.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Miyanaga, N.

K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993).
[CrossRef]

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993).
[CrossRef]

H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Munro, D.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Munro, D. H.

M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluids B 2, 1007–1014 (1990).
[CrossRef]

Nakai, S.

K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993).
[CrossRef]

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993).
[CrossRef]

Nakano, H.

K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993).
[CrossRef]

H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
[CrossRef]

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993).
[CrossRef]

Nakatsuka, M.

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993).
[CrossRef]

H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
[CrossRef]

K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993).
[CrossRef]

Nakei, S.

H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
[CrossRef]

Naktsuka, M.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Obenschain, S. P.

R. H. Lehmberg and S. P. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983).
[CrossRef]

Pennington, D. M.

D. M. Pennington, M. A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, and T. L. Weiland, “Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 175–185 (1993).
[CrossRef]

Powell, H. T.

D. M. Pennington, M. A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, and T. L. Weiland, “Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 175–185 (1993).
[CrossRef]

Remington, B. A.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Rostaing, M.

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

Rothenberg, J. E.

J. E. Rothenberg, D. Eimerl, M. H. Key, and S. V. Weber, “Illumination uniformity requirements for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 162–169 (1995).
[CrossRef]

J. E. Rothenberg, “Two dimensional beam smoothing by spectral dispersion for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 634–644 (1995).
[CrossRef]

Sauteret, C.

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Skupsky, S.

R. S. Craxton and S. Skupsky, “2D SSD and polarization wedges for OMEGA and the NIF,” Bull. Am. Phys. Soc. 40, 1826 (1995).

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Tabak, M.

M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluids B 2, 1007–1014 (1990).
[CrossRef]

Thiell, G.

D. Véron, G. Thiell, and C. Gouedard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
[CrossRef]

Thompson, C. E.

D. M. Pennington, M. A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, and T. L. Weiland, “Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 175–185 (1993).
[CrossRef]

Tsubakimoto, K.

K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993).
[CrossRef]

H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
[CrossRef]

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993).
[CrossRef]

Verdon, C. P.

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Véron, D.

D. Véron, G. Thiell, and C. Gouedard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
[CrossRef]

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

Weber, S. V.

J. E. Rothenberg, D. Eimerl, M. H. Key, and S. V. Weber, “Illumination uniformity requirements for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 162–169 (1995).
[CrossRef]

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Weiland, T. L.

D. M. Pennington, M. A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, and T. L. Weiland, “Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 175–185 (1993).
[CrossRef]

Yagi, K.

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993).
[CrossRef]

Yamanka, C.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Appl. Phys. Lett. (1)

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, M. Nakatsuka, and S. Nakai, “Partially coherent light generated by using single and multimode optical fibers in a high-power Nd:glass laser system,” Appl. Phys. Lett. 63, 580–582 (1993).
[CrossRef]

Bull. Am. Phys. Soc. (1)

R. S. Craxton and S. Skupsky, “2D SSD and polarization wedges for OMEGA and the NIF,” Bull. Am. Phys. Soc. 40, 1826 (1995).

Fusion Technology (1)

R. H. Lehmberg and J. Goldhar, “Use of incoherence to produce smooth and controllable irradiation profiles with KrF fusion lasers,” Fusion Technology 11, 532–541 (1987).

J. Appl. Phys. (2)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

H. Nakano, K. Tsubakimoto, N. Miyanaga, M. Nakatsuka, T. Kanabe, H. Azechi, T. Jitsuno, and S. Nakei, “Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system,” J. Appl. Phys. 73, 2122–2131 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

D. Véron, G. Thiell, and C. Gouedard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259–271 (1993).
[CrossRef]

D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, and C. Sauteret, “Optical spatial smoothing of Nd-glass laser beam,” Opt. Commun. 65, 42–45 (1988).
[CrossRef]

R. H. Lehmberg and S. P. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27–31 (1983).
[CrossRef]

R. H. Lehmberg, “Spatial profile distortion of harmonically-converted partially-coherent light,” Opt. Commun. 130, 51–56 (1996).
[CrossRef]

Phys. Fluids B (1)

M. Tabak, D. H. Munro, and J. D. Lindl, “Hydrodynamic stability and the direct drive approach to laser fusion,” Phys. Fluids B 2, 1007–1014 (1990).
[CrossRef]

Phys. Plasmas (1)

J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Naktsuka, and C. Yamanka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Proc. SPIE (4)

D. M. Pennington, M. A. Henesian, S. N. Dixit, H. T. Powell, C. E. Thompson, and T. L. Weiland, “Effect of bandwidth on beam smoothing and frequency conversion at the third harmonic of the Nova laser,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 175–185 (1993).
[CrossRef]

K. Tsubakimoto, M. Nakatsuka, N. Miyanaga, T. Jitsuno, T. Kanabe, H. Nakano, and S. Nakai, “Evaluation of irradiation uniformity on spherical target using angularly dispersed, partially coherent light in direct drive laser fusion,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds. Proc. SPIE 1870, 186–197 (1993).
[CrossRef]

J. E. Rothenberg, D. Eimerl, M. H. Key, and S. V. Weber, “Illumination uniformity requirements for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 162–169 (1995).
[CrossRef]

J. E. Rothenberg, “Two dimensional beam smoothing by spectral dispersion for direct drive inertial confinement fusion,” in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell, eds., Proc. SPIE 2633, 634–644 (1995).
[CrossRef]

Other (4)

H. T. Powell, S. N. Dixit, and M. A. Henesian, “Beam smoothing capability of the Nova Laser,” Lawrence Livermore National Laboratory ICF Quarterly Report UCRL-LR-105821–91–1 (Lawrence Livermore National Laboratory, Livermore, Calif., 1990), Vol. 1, pp. 28–38.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), pp. 164–168; 238–243.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics, J. C. Dainty ed., Springer-Verlag, New York, 1984), pp. 9–46.

Ref. 18, pp. 63–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic layout of 1D-SSD with generalized phase modulation.

Fig. 2
Fig. 2

Calculated spatial spectral intensity of speckle patterns with random smoothing (ISI) of divergence FWHM 50λ/D for (top to bottom curves) the initial static speckle pattern and after an integration time equivalent to 3, 10, 30, 100, 300, and 1000 coherence times. The dashed lines show the ideal smoothing result for the case of large beam divergence.

Fig. 3
Fig. 3

Comparison of calculated spatial spectra for smoothing by ISI of divergence FWHM 50λ/D (solid curves) with that of standard FM-2D-SSD of equal divergence (dotted curves) for (top to bottom) the initial static speckle pattern (for both ISI and SSD [top solid]) and after an integration time equivalent to 10 and 100 coherence times. The dashed lines show the ideal ISI smoothing result for the case of large beam divergence.

Fig. 4
Fig. 4

Comparison of calculated spatial spectra with 2D-SSD with RPM of 14 color cycles across the beam (solid curves) and single color cycle FM (dotted curves) of equal beam divergence for (top to bottom) the initial static speckle pattern (solid curve) and after an integration time equivalent to (a) 10, 100, (b) 2, 4, and 9 coherence times. The dashed curves show the ideal ISI smoothing result with large beam divergence.

Fig. 5
Fig. 5

Comparison of spatial spectra obtained by SSD with RPM with 14 (solid curves), 6.8 (dotted–dashed curves) and 2.7 (dotted curves) color cycles, for (top to bottom) the initial static speckle pattern (solid curve) and after an integration time equivalent to 10 and 100 coherence times. The beam divergence in each calculation is 50λ/D. The dashed curves show the ideal ISI smoothing result with large beam divergence.

Fig. 6
Fig. 6

(a) Spatial spectra of 1D-SSD with FM of a single color cycle (dotted curve) and four color cycles (lower solid curve) of equal bandwidth and divergence after an integration time equivalent to 4 coherence times. (b) Spatial spectra of 1D-SSD with FM of four color cycles [dotted curve, as in (a)], and then modified with the superposition of an additional FM (still 1D-SSD) of a single color cycle of equal bandwidth (lower solid curve). The upper solid curve in both plots is the static speckle spectrum.

Fig. 7
Fig. 7

Comparison of spatial spectra obtained with three FM’s in series for each direction of 2D-SSD, for (top to bottom) the initial static speckle pattern and after an integration time equivalent to 10 and 100 coherence times (solid curves). For each direction, the modulation frequencies and dispersion were chosen such that the three FM’s generated 6, 4, and 1 color cycles at modulation depths of 2.7, 2.7, and 16, respectively. The induced beam divergence in each calculation is 50λ/D. The dashed curves show the ideal ISI smoothing result with large beam divergence and equivalent bandwidth.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δνeff=I(ν)dν2|I(ν)|2dν.
σ2(UFF(x, y)-U¯FF)2/U¯FF2,
σ2=|U˜FF(fx, fy)|2dfxdfy/U¯FF2,
S(f)dfσ2=|U˜FF(fx, fy)|2fdfdθ/U¯FF2,
S(f)02π|U˜FF(f cos θ, f sin θ)|2fdθ/U¯FF2.
Ncc=Tskew/Tmod=Tskew×νmod,
E(x, t)=exp[iβ sin(kxx-ωmodt)],
E(x, t)E*(x+Δx, t)=exp{iβ[sin (kxx-ωmodt)-sin (kx(x+Δx)-ωmodt)]}=exp{-i2β sin (kxΔx/2)×cos (kx(x+Δx/2)-ωmodt)}.
Δνeff(f)2βeff(f)νmod2βνmod2πNccΔx/D=Δνtot2πNccf/f0,
IFF(u, t)=|Fx{ENF(x, t)}|u/λF|2,
I˜FF(f, t)Fu{IFF(u, t)}=-D/2D/2-ΔxENF*(x+Δx, t)ENF(x, t)dx,
U˜FF(f, T)0TI˜FF(f, t)dt=0T-D/2D/2-fλFENF*(x+fλF, t)×ENF(x, t)dxdt.
U˜FF(f, T)=-D/2D/2-fλFR*(x+fλF)R(x)×0TE*(x+fλF, t)E(x, t)dtdx.
|U˜FF(f, T)|2=-D/2D/2-fλFR*(x+fλF)R(x)×0TE*(x+fλF, t)E(x, t)dtdx2.
|U˜FF(f, T)|2=-D/2D/2-fλF0TE*(x+fλF, t)×E(x, t)dt2dx.
|U˜FF(f, T)|2=-D/2D/2-fλF0T exp[-iβeff(f)×cos(kx(x+fλF/2)-ωmodt)]dt2dx,

Metrics