Abstract

Using a macroscopic self-consistent model for scanning near-field optical microscopy, we show that the field distribution of light emitted by an uncoated fiber tip near a sample surface consists of two spatially separated domains, of which only the central domain (near the tip end) contains evanescent-field components. The relative magnitude of the near-field contribution is found to be strongly dependent on the tip shape. Spatial resolution in near-field microscopy and lithography with uncoated fiber tips is discussed on the basis of the numerical results. Experimental results obtained on surface modification of polymer films, phase conjugation of optical near fields, and surface-polariton localization are presented. Using optical images with true optical contrast (i.e., not correlated to surface topography), we find the spatial resolution to be 100 nm for the light wavelength of 633 nm.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl and D. Courjon, eds., Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993).
  2. O. Marti and R. Möller, eds., Photons and Local Probes (Kluwer, Dordrecht, The Netherlands, 1995).
  3. M. Nieto-Vesperinas and N. Garcı́a, eds., Optics at the Nanometer Scale (Kluwer, Dordrecht, The Netherlands, 1996).
  4. D. Courjon, J.-M. Vigoureux, M. Spajer, K. Sarayeddine, and S. Leblanc, “External and internal reflection near field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
    [CrossRef] [PubMed]
  5. M. H. P. Moers, R. G. Tack, N. F. van Hulst, and B. Bölger, “Photon scanning tunneling microscope in combination with a force microscope,” J. Appl. Phys. 75, 1254–1257 (1994).
    [CrossRef]
  6. A. J. Meixner, M. A. Bopp, and G. Tarrach, “Direct measurement of standing evanescent waves with a photon-scanning tunneling microscope,” Appl. Opt. 33, 7995–8000 (1994).
    [CrossRef] [PubMed]
  7. N. F. Van Hulst, M. H. P. Moers, and B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
    [CrossRef]
  8. M. Spajer and A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993), pp. 87–96.
  9. S. I. Bozhevolnyi, M. Xiao, and O. Keller, “External-reflection near-field optical microscope with cross-polarized detection,” Appl. Opt. 33, 876–880 (1994).
    [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, I. I. Smolyaninov, and O. Keller, “Correlation between optical and topographical images from an external reflection near-field microscope with shear force feedback,” Appl. Opt. 34, 3793–3799 (1995).
    [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Phase conjugation of an optical near field,” Opt. Lett. 19, 1601–1603 (1994).
    [CrossRef] [PubMed]
  12. A. Jalocha and N. F. van Hulst, “Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection,” Opt. Commun. 119, 17–22 (1995).
    [CrossRef]
  13. S. I. Bozhevolnyi, I. I. Smolyaninov, and A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
    [CrossRef]
  14. G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
    [CrossRef]
  15. S. Bozhevolnyi, S. Berntsen, and E. Bozhevolnaya, “Extension of the macroscopic model for reflection near-field microscopy: regularization and image formation,” J. Opt. Soc. Am. A 11, 609–617 (1994).
    [CrossRef]
  16. S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, “Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror,” J. Opt. Soc. Am. A 13, 2381–2392 (1996).
    [CrossRef]
  17. J. C. Weeber, F. de Fornel, and J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
    [CrossRef]
  18. I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process,” Appl. Phys. Lett. 67, 3859–3861 (1995).
    [CrossRef]
  19. S. Madsen, M. Müllenborn, K. Birkelund, and F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
    [CrossRef]
  20. S. Davy and M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
    [CrossRef]
  21. S. I. Bozhevolnyi, E. A. Bozhevolnaya, and S. Berntsen, “Theoretical model for phase conjugation of optical near fields,” J. Opt. Soc. Am. A 12, 2645–2654 (1995).
    [CrossRef]
  22. S. Berntsen, E. Bozhevolnaya, and S. Bozhevolnyi, “Macroscopic self-consistent model for external-reflection near-field microscopy,” J. Opt. Soc. Am. A 10, 878–885 (1993).
    [CrossRef]
  23. E. A. Bozhevolnaya, S. I. Bozhevolnyi, and S. Berntsen, “Regularization in the macroscopic self-consistent model for near-field microscopy,” Ultramicroscopy 61, 35–41 (1995).
    [CrossRef]
  24. S. I. Bozhevolnyi, O. Keller, and M. Xiao, “Control of the tip-surface distance in near-field optical microscopy,” Appl. Opt. 32, 4864–4868 (1993).
    [CrossRef] [PubMed]
  25. S. I. Bozhevolnyi, “Localization phenomena in elastic surface polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
    [CrossRef]
  26. S. I. Bozhevolnyi and I. I. Smolyaninov, “Characterization of phase-conjugated near-field light spots,” J. Opt. Soc. Am. B 12, 1617–1620 (1995).
    [CrossRef]
  27. A. Dereux and D. W. Pohl, “The 90° prism edge as a model SNOM probe: near-field, photon tunneling, and far-field properties,” in Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993), pp. 189–198.
  28. L. Novotny, D. W. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
    [CrossRef]
  29. C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
    [CrossRef]
  30. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
    [CrossRef]
  31. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
    [CrossRef]
  32. S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
    [CrossRef]

1996 (6)

J. C. Weeber, F. de Fornel, and J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
[CrossRef]

S. Madsen, M. Müllenborn, K. Birkelund, and F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

S. Davy and M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, “Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror,” J. Opt. Soc. Am. A 13, 2381–2392 (1996).
[CrossRef]

1995 (11)

S. I. Bozhevolnyi, E. A. Bozhevolnaya, and S. Berntsen, “Theoretical model for phase conjugation of optical near fields,” J. Opt. Soc. Am. A 12, 2645–2654 (1995).
[CrossRef]

S. I. Bozhevolnyi and I. I. Smolyaninov, “Characterization of phase-conjugated near-field light spots,” J. Opt. Soc. Am. B 12, 1617–1620 (1995).
[CrossRef]

S. I. Bozhevolnyi, I. I. Smolyaninov, and O. Keller, “Correlation between optical and topographical images from an external reflection near-field microscope with shear force feedback,” Appl. Opt. 34, 3793–3799 (1995).
[CrossRef] [PubMed]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
[CrossRef]

E. A. Bozhevolnaya, S. I. Bozhevolnyi, and S. Berntsen, “Regularization in the macroscopic self-consistent model for near-field microscopy,” Ultramicroscopy 61, 35–41 (1995).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process,” Appl. Phys. Lett. 67, 3859–3861 (1995).
[CrossRef]

A. Jalocha and N. F. van Hulst, “Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection,” Opt. Commun. 119, 17–22 (1995).
[CrossRef]

S. I. Bozhevolnyi, I. I. Smolyaninov, and A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
[CrossRef]

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

1994 (6)

1993 (3)

1990 (1)

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

Berntsen, S.

Bielefeldt, H.

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Birkelund, K.

S. Madsen, M. Müllenborn, K. Birkelund, and F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

Bölger, B.

M. H. P. Moers, R. G. Tack, N. F. van Hulst, and B. Bölger, “Photon scanning tunneling microscope in combination with a force microscope,” J. Appl. Phys. 75, 1254–1257 (1994).
[CrossRef]

N. F. Van Hulst, M. H. P. Moers, and B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[CrossRef]

Bopp, M. A.

Bozhevolnaya, E.

Bozhevolnaya, E. A.

Bozhevolnyi, S.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, “Localization phenomena in elastic surface polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, “Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror,” J. Opt. Soc. Am. A 13, 2381–2392 (1996).
[CrossRef]

S. I. Bozhevolnyi, E. A. Bozhevolnaya, and S. Berntsen, “Theoretical model for phase conjugation of optical near fields,” J. Opt. Soc. Am. A 12, 2645–2654 (1995).
[CrossRef]

S. I. Bozhevolnyi and I. I. Smolyaninov, “Characterization of phase-conjugated near-field light spots,” J. Opt. Soc. Am. B 12, 1617–1620 (1995).
[CrossRef]

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
[CrossRef]

E. A. Bozhevolnaya, S. I. Bozhevolnyi, and S. Berntsen, “Regularization in the macroscopic self-consistent model for near-field microscopy,” Ultramicroscopy 61, 35–41 (1995).
[CrossRef]

S. I. Bozhevolnyi, I. I. Smolyaninov, and A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
[CrossRef]

S. I. Bozhevolnyi, I. I. Smolyaninov, and O. Keller, “Correlation between optical and topographical images from an external reflection near-field microscope with shear force feedback,” Appl. Opt. 34, 3793–3799 (1995).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, M. Xiao, and O. Keller, “External-reflection near-field optical microscope with cross-polarized detection,” Appl. Opt. 33, 876–880 (1994).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Phase conjugation of an optical near field,” Opt. Lett. 19, 1601–1603 (1994).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, O. Keller, and M. Xiao, “Control of the tip-surface distance in near-field optical microscopy,” Appl. Opt. 32, 4864–4868 (1993).
[CrossRef] [PubMed]

Courjon, D.

Davis, C. C.

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process,” Appl. Phys. Lett. 67, 3859–3861 (1995).
[CrossRef]

Davy, S.

S. Davy and M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

de Fornel, F.

J. C. Weeber, F. de Fornel, and J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
[CrossRef]

Dereux, A.

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

A. Dereux and D. W. Pohl, “The 90° prism edge as a model SNOM probe: near-field, photon tunneling, and far-field properties,” in Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993), pp. 189–198.

Girard, C.

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Goudonnet, J. P.

J. C. Weeber, F. de Fornel, and J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
[CrossRef]

Grey, F.

S. Madsen, M. Müllenborn, K. Birkelund, and F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

Jalocha, A.

A. Jalocha and N. F. van Hulst, “Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection,” Opt. Commun. 119, 17–22 (1995).
[CrossRef]

M. Spajer and A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993), pp. 87–96.

Keller, O.

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Kirsch, A.

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Krausch, G.

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Leblanc, S.

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Madsen, S.

S. Madsen, M. Müllenborn, K. Birkelund, and F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

Mazzoni, D. L.

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process,” Appl. Phys. Lett. 67, 3859–3861 (1995).
[CrossRef]

Meiners, J. C.

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Meixner, A. J.

Mlynek, J.

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Moers, M. H. P.

M. H. P. Moers, R. G. Tack, N. F. van Hulst, and B. Bölger, “Photon scanning tunneling microscope in combination with a force microscope,” J. Appl. Phys. 75, 1254–1257 (1994).
[CrossRef]

N. F. Van Hulst, M. H. P. Moers, and B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[CrossRef]

Müllenborn, M.

S. Madsen, M. Müllenborn, K. Birkelund, and F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

Novotny, L.

Pohl, D. W.

L. Novotny, D. W. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
[CrossRef]

A. Dereux and D. W. Pohl, “The 90° prism edge as a model SNOM probe: near-field, photon tunneling, and far-field properties,” in Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993), pp. 189–198.

Regli, P.

Rochon, P.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

Sarayeddine, K.

Smolyaninov, I. I.

S. I. Bozhevolnyi, I. I. Smolyaninov, and O. Keller, “Correlation between optical and topographical images from an external reflection near-field microscope with shear force feedback,” Appl. Opt. 34, 3793–3799 (1995).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
[CrossRef]

S. I. Bozhevolnyi and I. I. Smolyaninov, “Characterization of phase-conjugated near-field light spots,” J. Opt. Soc. Am. B 12, 1617–1620 (1995).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process,” Appl. Phys. Lett. 67, 3859–3861 (1995).
[CrossRef]

S. I. Bozhevolnyi, I. I. Smolyaninov, and A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
[CrossRef]

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Phase conjugation of an optical near field,” Opt. Lett. 19, 1601–1603 (1994).
[CrossRef] [PubMed]

Spajer, M.

S. Davy and M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

D. Courjon, J.-M. Vigoureux, M. Spajer, K. Sarayeddine, and S. Leblanc, “External and internal reflection near field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
[CrossRef] [PubMed]

M. Spajer and A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993), pp. 87–96.

Tack, R. G.

M. H. P. Moers, R. G. Tack, N. F. van Hulst, and B. Bölger, “Photon scanning tunneling microscope in combination with a force microscope,” J. Appl. Phys. 75, 1254–1257 (1994).
[CrossRef]

Tarrach, G.

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

van Hulst, N. F.

A. Jalocha and N. F. van Hulst, “Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection,” Opt. Commun. 119, 17–22 (1995).
[CrossRef]

M. H. P. Moers, R. G. Tack, N. F. van Hulst, and B. Bölger, “Photon scanning tunneling microscope in combination with a force microscope,” J. Appl. Phys. 75, 1254–1257 (1994).
[CrossRef]

N. F. Van Hulst, M. H. P. Moers, and B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[CrossRef]

Vigoureux, J.-M.

Vohnsen, B.

Weeber, J. C.

J. C. Weeber, F. de Fornel, and J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
[CrossRef]

Wegscheider, S.

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

Xiao, M.

Zayats, A. V.

S. I. Bozhevolnyi, I. I. Smolyaninov, and A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (5)

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

I. I. Smolyaninov, D. L. Mazzoni, and C. C. Davis, “Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process,” Appl. Phys. Lett. 67, 3859–3861 (1995).
[CrossRef]

S. Madsen, M. Müllenborn, K. Birkelund, and F. Grey, “Optical near-field lithography on hydrogen-passivated silicon surfaces,” Appl. Phys. Lett. 69, 544–546 (1996).
[CrossRef]

S. Davy and M. Spajer, “Near field optics: snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69, 3306–3308 (1996).
[CrossRef]

J. Appl. Phys. (1)

M. H. P. Moers, R. G. Tack, N. F. van Hulst, and B. Bölger, “Photon scanning tunneling microscope in combination with a force microscope,” J. Appl. Phys. 75, 1254–1257 (1994).
[CrossRef]

J. Microsc. (1)

N. F. Van Hulst, M. H. P. Moers, and B. Bölger, “Near-field optical microscopy in transmission and reflection modes in combination with force microscopy,” J. Microsc. 171, 95–105 (1993).
[CrossRef]

J. Opt. Soc. Am. A (5)

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
[CrossRef]

G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek, “Near field microscopy and lithography with uncoated fiber tips: a comparison,” Opt. Commun. 119, 283–288 (1995).
[CrossRef]

J. C. Weeber, F. de Fornel, and J. P. Goudonnet, “Numerical study of the tip–sample interaction in the photon scanning tunneling microscope,” Opt. Commun. 126, 285–292 (1996).
[CrossRef]

A. Jalocha and N. F. van Hulst, “Dielectric and fluorescent samples imaged by scanning near-field optical microscopy in reflection,” Opt. Commun. 119, 17–22 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

S. I. Bozhevolnyi, I. I. Smolyaninov, and A. V. Zayats, “Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging,” Phys. Rev. B 51, 17916–17924 (1995).
[CrossRef]

S. I. Bozhevolnyi, “Localization phenomena in elastic surface polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
[CrossRef]

Rep. Prog. Phys. (1)

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59, 657–699 (1996).
[CrossRef]

Ultramicroscopy (1)

E. A. Bozhevolnaya, S. I. Bozhevolnyi, and S. Berntsen, “Regularization in the macroscopic self-consistent model for near-field microscopy,” Ultramicroscopy 61, 35–41 (1995).
[CrossRef]

Other (5)

M. Spajer and A. Jalocha, “The reflection near field optical microscope: an alternative to STOM,” in Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993), pp. 87–96.

D. W. Pohl and D. Courjon, eds., Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993).

O. Marti and R. Möller, eds., Photons and Local Probes (Kluwer, Dordrecht, The Netherlands, 1995).

M. Nieto-Vesperinas and N. Garcı́a, eds., Optics at the Nanometer Scale (Kluwer, Dordrecht, The Netherlands, 1996).

A. Dereux and D. W. Pohl, “The 90° prism edge as a model SNOM probe: near-field, photon tunneling, and far-field properties,” in Near Field Optics (Kluwer, Dordrecht, The Netherlands, 1993), pp. 189–198.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Magnitude distributions of the self-consistent field at the sample surface calculated for tips N1 (solid curve), N2 (dashed curve), and N3 (dotted curve). Tip–surface distance is 5 nm.

Fig. 2
Fig. 2

Intensity distributions of the self-consistent field calculated for tips N1, N2, and N3. All else is as in Fig. 1.

Fig. 3
Fig. 3

Surface profiles of the exposed polymer film calculated for tips N1, N2, and N3 in the assumption of mass diffusion under the light exposure.

Fig. 4
Fig. 4

Gray-scale topographical image of 4 µm×3.5 µm of the PMMA-DR1 film surface exposed to the light emitted by the fiber tip located 0.5 µm away from the surface. The light power incident on the coupling microobjective was 50 mW. The maximum depth of the image is 158 nm.

Fig. 5
Fig. 5

Gray-scale topographical image of 1.1 µm×0.9 µm of the PMMA-DR1 film surface exposed to the light emitted by the fiber tip kept with shear-force feedback. The light power incident on the coupling micro-objective was 25 mW. The maximum depth of the image is 28 nm.

Fig. 6
Fig. 6

Cross sections of the topographical images shown in Figs. 4(a) and 5(b).

Fig. 7
Fig. 7

Gray-scale (a) topographical and (b) near-field optical images of 1.1 µm×1 µm of the crystal surface taken immediately after the exposure. The maximum depth of the topographical image is 12 nm. Contrast of the optical image is 95%.

Fig. 8
Fig. 8

Gray-scale (a) topographical and (b) near-field optical images of 4 µm×2.6 µm of latex spheres with the diameter of 200 nm placed on the crystal surface. The maximum depth of the topographical images is 219 nm. Contrast of the optical image is 95%.

Fig. 9
Fig. 9

Distributions of the phase-conjugated (PC) light intensity measured along the cross sections of the bright spots on the optical images shown in Fig. 7 (filled circles) and Fig. 8 (filled triangles).

Fig. 10
Fig. 10

Gray-scale (a) topographical and (b) near-field optical images of 2.2 µm×2 µm of the silver film with the surface polariton being resonantly excited. The maximum depth of the topographical image is 163 nm. Contrast of the optical image is 90%.

Fig. 11
Fig. 11

Cross sections of the bright spots located in the lower part of the optical image shown in Fig. 10.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

e(p)ϕ(p)+(k12-k22)-+ K(p, v)e(v)dv
=2α1(p)ein(p),
E(x)=2-+ α2(p)e(p)exp[i(px)]dp.

Metrics