Abstract

The experimental fact that fused silica undergoes densification upon prolonged exposure to high-energy radiation is well documented. About 25 years ago, Primak and Kampwirth [J. Appl. Phys. 39, 5651 (1968)] reported extensive densification results in SiO2 obtained with neutron, electron, and γ-ray exposures. More recently, results from experiments with pulsed deep-ultraviolet exposures have been reported. We report here our experimental results and analysis of the densification of Corning HPFS materials under 193-nm exposure. The densification δρ/ρ induced by the radiation was obtained from interferometric and birefringence measurements with the aid of a finite-element analysis. The use of such analysis is necessary to obtain the laser-induced densification independent of sample size, geometry, irradiation pattern, and intensity profile of the exposure beam. In our case the sample was 10 mm × 15 mm × 20 mm irradiated across the 10-mm face with a 5-mm apertured Gaussian beam in the 15-mm direction. The birefringence and wave-front distortion were measured off line as a function of number of pulses for distinct values of fluence per pulse. We found that the derived densification follows a universal function of the dose, defined as the product of the number of pulses and the square of the fluence per pulse. In fact, it follows the same functional form as that previously determined by Primak in his high-energy-exposure study. This strongly suggests that the laser-induced densification mechanism involves the optically induced weakening of bonds and subsequent relaxation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Primak and R. Kampwirth, “The radiation compaction of vitreous silica,” J. Appl. Phys. 39, 5651–5658 (1968); also W. Primak, “Dependence of the compaction of vitreous silica on the ionization dose,” J. Appl. Phys. 49, 2572 (1977).
    [CrossRef]
  2. C. B. Norris and E. P. EerNisse, “Ionization dilatation effects in fused silica from 2 to 18-keV electron irradiation,” J. Appl. Phys. 45, 3876–3882 (1974).
    [CrossRef]
  3. T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Volume, index-of-refraction, and stress changes in electron-irradiated vitreous silica,” J. Appl. Phys. 48, 1131–1138 (1977).
    [CrossRef]
  4. G. W. Arnold and W. Dale Compton, “Radiation effects in silica at low temperature,” Phys. Rev. 116, 802–811 (1959).
    [CrossRef]
  5. E. P. EerNisse, “Compaction of ion-implanted fused silica,” J. Appl. Phys. 45, 167–174 (1974).
    [CrossRef]
  6. C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Phys. Rev. B 33, 2972–2974 (1986).
    [CrossRef]
  7. M. Rothschild, D. J. Erlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
    [CrossRef]
  8. P. M. Schermerhorn, “Excimer laser damage testing of optical materials,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, Proc. SPIE 1835, 70–79 (1992).
    [CrossRef]
  9. R. Schenker, P. Schermerhorn, and W. G. Oldham, “Deep-ultraviolet damage to fused silica,” J. Vac. Sci. Technol. B 12, 3275–3279 (1994).
    [CrossRef]
  10. R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser Induced Damage in Optical Materials, Proc. SPIE 2428, 458–468 (1995).
    [CrossRef]
  11. R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193-nm and 213-nm,” in Optical Laser Microlithography VIII, Proc. SPIE 2440, 118–125 (1995).
    [CrossRef]
  12. R. Schenker, F. Piao, and W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography, Proc. SPIE 2726, 698–707 (1996).
    [CrossRef]
  13. O. Kittelman and J. Ringling, “Intensity-dependent transmission properties of window materials at 193 nm irradiation,” Opt. Lett. 19, 2053–2055 (1994).
    [CrossRef]
  14. H. R. Lillie and H. N. Ritland, “Fine annealing of optical glass,” J. Am. Cer. Soc. 37, 466–473 (1954).
    [CrossRef]
  15. J. Ruller and E. J. Friebele, “The effect of γ-radiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
    [CrossRef]
  16. W. Primak, The Compacted States of Vitreous Silica, Vol. 4 of Studies in Radiation Effects in Solids, G. J. Dienes and L. T. Chadderton, eds. (Gordon & Breach, New York, 1975), pp. 91–102.
  17. D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
    [CrossRef]
  18. P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2,” Phys. Rev. Lett. 70, 3588–3591 (1993).
    [CrossRef] [PubMed]
  19. A. J. Fisher, W. Hayes, and A. M. Stoneham, “Structure of the self-trapped exciton in quartz,” Phys. Rev. Lett. 64, 2667–2670 (1990).
    [CrossRef] [PubMed]
  20. C. T. Moynihan, E. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Cer. Soc. 59, 12–16 (1976).
    [CrossRef]
  21. K. I. Ngai and A. F. Yee, “Nonlinear viscoelastic behavior of glassy polymers,” in Relaxations in Complex Systems, K. I. Ngai and G. B. Wright, eds. (U.S. Government Printing Office, Washington, D.C., 1985), pp. 145–164.
  22. G. Williams, “Molecular motion in glass-forming systems,” J. Non-Cryst. Solids 131, 1–12 (1991), and references contained therein.
    [CrossRef]
  23. G. W. Scherer, “Theories of relaxation,” J. Non-Cryst. Solids 123, 75–89 (1990).
    [CrossRef]
  24. R. A. B. Devine and M. Marchand, “Evidence for structural similarities between chemical vapor deposited and neutron irradiated SiO2,” Appl. Phys. Lett. 63, 619–621 (1993).
    [CrossRef]
  25. N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. Kinoshita, “Refractive index of densified silica glass,” J. Non-Cryst. Solids 159, 241–245 (1993).
    [CrossRef]
  26. J. Schroeder, “Brillouin scattering and Pockels coefficients in silicate glasses,” J. Non-Cryst. Solids 40, 549–566 (1980).
    [CrossRef]

1996 (1)

R. Schenker, F. Piao, and W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography, Proc. SPIE 2726, 698–707 (1996).
[CrossRef]

1995 (2)

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser Induced Damage in Optical Materials, Proc. SPIE 2428, 458–468 (1995).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193-nm and 213-nm,” in Optical Laser Microlithography VIII, Proc. SPIE 2440, 118–125 (1995).
[CrossRef]

1994 (2)

O. Kittelman and J. Ringling, “Intensity-dependent transmission properties of window materials at 193 nm irradiation,” Opt. Lett. 19, 2053–2055 (1994).
[CrossRef]

R. Schenker, P. Schermerhorn, and W. G. Oldham, “Deep-ultraviolet damage to fused silica,” J. Vac. Sci. Technol. B 12, 3275–3279 (1994).
[CrossRef]

1993 (3)

P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2,” Phys. Rev. Lett. 70, 3588–3591 (1993).
[CrossRef] [PubMed]

R. A. B. Devine and M. Marchand, “Evidence for structural similarities between chemical vapor deposited and neutron irradiated SiO2,” Appl. Phys. Lett. 63, 619–621 (1993).
[CrossRef]

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. Kinoshita, “Refractive index of densified silica glass,” J. Non-Cryst. Solids 159, 241–245 (1993).
[CrossRef]

1992 (1)

P. M. Schermerhorn, “Excimer laser damage testing of optical materials,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, Proc. SPIE 1835, 70–79 (1992).
[CrossRef]

1991 (3)

J. Ruller and E. J. Friebele, “The effect of γ-radiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[CrossRef]

G. Williams, “Molecular motion in glass-forming systems,” J. Non-Cryst. Solids 131, 1–12 (1991), and references contained therein.
[CrossRef]

1990 (2)

G. W. Scherer, “Theories of relaxation,” J. Non-Cryst. Solids 123, 75–89 (1990).
[CrossRef]

A. J. Fisher, W. Hayes, and A. M. Stoneham, “Structure of the self-trapped exciton in quartz,” Phys. Rev. Lett. 64, 2667–2670 (1990).
[CrossRef] [PubMed]

1989 (1)

M. Rothschild, D. J. Erlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

1986 (1)

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Phys. Rev. B 33, 2972–2974 (1986).
[CrossRef]

1980 (1)

J. Schroeder, “Brillouin scattering and Pockels coefficients in silicate glasses,” J. Non-Cryst. Solids 40, 549–566 (1980).
[CrossRef]

1977 (1)

T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Volume, index-of-refraction, and stress changes in electron-irradiated vitreous silica,” J. Appl. Phys. 48, 1131–1138 (1977).
[CrossRef]

1976 (1)

C. T. Moynihan, E. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Cer. Soc. 59, 12–16 (1976).
[CrossRef]

1974 (2)

C. B. Norris and E. P. EerNisse, “Ionization dilatation effects in fused silica from 2 to 18-keV electron irradiation,” J. Appl. Phys. 45, 3876–3882 (1974).
[CrossRef]

E. P. EerNisse, “Compaction of ion-implanted fused silica,” J. Appl. Phys. 45, 167–174 (1974).
[CrossRef]

1959 (1)

G. W. Arnold and W. Dale Compton, “Radiation effects in silica at low temperature,” Phys. Rev. 116, 802–811 (1959).
[CrossRef]

1954 (1)

H. R. Lillie and H. N. Ritland, “Fine annealing of optical glass,” J. Am. Cer. Soc. 37, 466–473 (1954).
[CrossRef]

Arnold, G. W.

G. W. Arnold and W. Dale Compton, “Radiation effects in silica at low temperature,” Phys. Rev. 116, 802–811 (1959).
[CrossRef]

Barsis, E. H.

T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Volume, index-of-refraction, and stress changes in electron-irradiated vitreous silica,” J. Appl. Phys. 48, 1131–1138 (1977).
[CrossRef]

Dale Compton, W.

G. W. Arnold and W. Dale Compton, “Radiation effects in silica at low temperature,” Phys. Rev. 116, 802–811 (1959).
[CrossRef]

Debolt, M. A.

C. T. Moynihan, E. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Cer. Soc. 59, 12–16 (1976).
[CrossRef]

Dellin, T. A.

T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Volume, index-of-refraction, and stress changes in electron-irradiated vitreous silica,” J. Appl. Phys. 48, 1131–1138 (1977).
[CrossRef]

Devine, R. A. B.

R. A. B. Devine and M. Marchand, “Evidence for structural similarities between chemical vapor deposited and neutron irradiated SiO2,” Appl. Phys. Lett. 63, 619–621 (1993).
[CrossRef]

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Phys. Rev. B 33, 2972–2974 (1986).
[CrossRef]

Easteal, E. J.

C. T. Moynihan, E. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Cer. Soc. 59, 12–16 (1976).
[CrossRef]

EerNisse, E. P.

C. B. Norris and E. P. EerNisse, “Ionization dilatation effects in fused silica from 2 to 18-keV electron irradiation,” J. Appl. Phys. 45, 3876–3882 (1974).
[CrossRef]

E. P. EerNisse, “Compaction of ion-implanted fused silica,” J. Appl. Phys. 45, 167–174 (1974).
[CrossRef]

Eichner, L.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser Induced Damage in Optical Materials, Proc. SPIE 2428, 458–468 (1995).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193-nm and 213-nm,” in Optical Laser Microlithography VIII, Proc. SPIE 2440, 118–125 (1995).
[CrossRef]

Erlich, D. J.

M. Rothschild, D. J. Erlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Fiori, C.

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Phys. Rev. B 33, 2972–2974 (1986).
[CrossRef]

Fisher, A. J.

A. J. Fisher, W. Hayes, and A. M. Stoneham, “Structure of the self-trapped exciton in quartz,” Phys. Rev. Lett. 64, 2667–2670 (1990).
[CrossRef] [PubMed]

Fladd, D.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser Induced Damage in Optical Materials, Proc. SPIE 2428, 458–468 (1995).
[CrossRef]

Friebele, E. J.

J. Ruller and E. J. Friebele, “The effect of γ-radiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

Funo, S.

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. Kinoshita, “Refractive index of densified silica glass,” J. Non-Cryst. Solids 159, 241–245 (1993).
[CrossRef]

Greene, B. I.

P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2,” Phys. Rev. Lett. 70, 3588–3591 (1993).
[CrossRef] [PubMed]

Griscom, D. L.

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[CrossRef]

Hayes, W.

A. J. Fisher, W. Hayes, and A. M. Stoneham, “Structure of the self-trapped exciton in quartz,” Phys. Rev. Lett. 64, 2667–2670 (1990).
[CrossRef] [PubMed]

Kinoshita, M.

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. Kinoshita, “Refractive index of densified silica glass,” J. Non-Cryst. Solids 159, 241–245 (1993).
[CrossRef]

Kitamura, N.

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. Kinoshita, “Refractive index of densified silica glass,” J. Non-Cryst. Solids 159, 241–245 (1993).
[CrossRef]

Kittelman, O.

Lillie, H. R.

H. R. Lillie and H. N. Ritland, “Fine annealing of optical glass,” J. Am. Cer. Soc. 37, 466–473 (1954).
[CrossRef]

Marchand, M.

R. A. B. Devine and M. Marchand, “Evidence for structural similarities between chemical vapor deposited and neutron irradiated SiO2,” Appl. Phys. Lett. 63, 619–621 (1993).
[CrossRef]

Moynihan, C. T.

C. T. Moynihan, E. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Cer. Soc. 59, 12–16 (1976).
[CrossRef]

Norris, C. B.

C. B. Norris and E. P. EerNisse, “Ionization dilatation effects in fused silica from 2 to 18-keV electron irradiation,” J. Appl. Phys. 45, 3876–3882 (1974).
[CrossRef]

Oldham, W. G.

R. Schenker, F. Piao, and W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography, Proc. SPIE 2726, 698–707 (1996).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193-nm and 213-nm,” in Optical Laser Microlithography VIII, Proc. SPIE 2440, 118–125 (1995).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser Induced Damage in Optical Materials, Proc. SPIE 2428, 458–468 (1995).
[CrossRef]

R. Schenker, P. Schermerhorn, and W. G. Oldham, “Deep-ultraviolet damage to fused silica,” J. Vac. Sci. Technol. B 12, 3275–3279 (1994).
[CrossRef]

Piao, F.

R. Schenker, F. Piao, and W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography, Proc. SPIE 2726, 698–707 (1996).
[CrossRef]

Ringling, J.

Ritland, H. N.

H. R. Lillie and H. N. Ritland, “Fine annealing of optical glass,” J. Am. Cer. Soc. 37, 466–473 (1954).
[CrossRef]

Rothschild, M.

M. Rothschild, D. J. Erlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Ruller, J.

J. Ruller and E. J. Friebele, “The effect of γ-radiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

Saeta, P. N.

P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2,” Phys. Rev. Lett. 70, 3588–3591 (1993).
[CrossRef] [PubMed]

Schenker, R.

R. Schenker, F. Piao, and W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography, Proc. SPIE 2726, 698–707 (1996).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser Induced Damage in Optical Materials, Proc. SPIE 2428, 458–468 (1995).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193-nm and 213-nm,” in Optical Laser Microlithography VIII, Proc. SPIE 2440, 118–125 (1995).
[CrossRef]

R. Schenker, P. Schermerhorn, and W. G. Oldham, “Deep-ultraviolet damage to fused silica,” J. Vac. Sci. Technol. B 12, 3275–3279 (1994).
[CrossRef]

Scherer, G. W.

G. W. Scherer, “Theories of relaxation,” J. Non-Cryst. Solids 123, 75–89 (1990).
[CrossRef]

Schermerhorn, P.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser Induced Damage in Optical Materials, Proc. SPIE 2428, 458–468 (1995).
[CrossRef]

R. Schenker, P. Schermerhorn, and W. G. Oldham, “Deep-ultraviolet damage to fused silica,” J. Vac. Sci. Technol. B 12, 3275–3279 (1994).
[CrossRef]

Schermerhorn, P. M.

P. M. Schermerhorn, “Excimer laser damage testing of optical materials,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, Proc. SPIE 1835, 70–79 (1992).
[CrossRef]

Schroeder, J.

J. Schroeder, “Brillouin scattering and Pockels coefficients in silicate glasses,” J. Non-Cryst. Solids 40, 549–566 (1980).
[CrossRef]

Shaver, D. C.

M. Rothschild, D. J. Erlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Stoneham, A. M.

A. J. Fisher, W. Hayes, and A. M. Stoneham, “Structure of the self-trapped exciton in quartz,” Phys. Rev. Lett. 64, 2667–2670 (1990).
[CrossRef] [PubMed]

Tichenor, D. A.

T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Volume, index-of-refraction, and stress changes in electron-irradiated vitreous silica,” J. Appl. Phys. 48, 1131–1138 (1977).
[CrossRef]

Toguchi, Y.

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. Kinoshita, “Refractive index of densified silica glass,” J. Non-Cryst. Solids 159, 241–245 (1993).
[CrossRef]

Tucker, J.

C. T. Moynihan, E. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Cer. Soc. 59, 12–16 (1976).
[CrossRef]

Vaidya, H.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193-nm and 213-nm,” in Optical Laser Microlithography VIII, Proc. SPIE 2440, 118–125 (1995).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser Induced Damage in Optical Materials, Proc. SPIE 2428, 458–468 (1995).
[CrossRef]

Vaidya, S.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser Induced Damage in Optical Materials, Proc. SPIE 2428, 458–468 (1995).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193-nm and 213-nm,” in Optical Laser Microlithography VIII, Proc. SPIE 2440, 118–125 (1995).
[CrossRef]

Williams, G.

G. Williams, “Molecular motion in glass-forming systems,” J. Non-Cryst. Solids 131, 1–12 (1991), and references contained therein.
[CrossRef]

Yamashita, H.

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. Kinoshita, “Refractive index of densified silica glass,” J. Non-Cryst. Solids 159, 241–245 (1993).
[CrossRef]

Appl. Phys. Lett. (2)

M. Rothschild, D. J. Erlich, and D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

R. A. B. Devine and M. Marchand, “Evidence for structural similarities between chemical vapor deposited and neutron irradiated SiO2,” Appl. Phys. Lett. 63, 619–621 (1993).
[CrossRef]

J. Am. Cer. Soc. (2)

C. T. Moynihan, E. J. Easteal, M. A. Debolt, and J. Tucker, “Dependence of the fictive temperature of glass on cooling rate,” J. Am. Cer. Soc. 59, 12–16 (1976).
[CrossRef]

H. R. Lillie and H. N. Ritland, “Fine annealing of optical glass,” J. Am. Cer. Soc. 37, 466–473 (1954).
[CrossRef]

J. Appl. Phys. (3)

C. B. Norris and E. P. EerNisse, “Ionization dilatation effects in fused silica from 2 to 18-keV electron irradiation,” J. Appl. Phys. 45, 3876–3882 (1974).
[CrossRef]

T. A. Dellin, D. A. Tichenor, and E. H. Barsis, “Volume, index-of-refraction, and stress changes in electron-irradiated vitreous silica,” J. Appl. Phys. 48, 1131–1138 (1977).
[CrossRef]

E. P. EerNisse, “Compaction of ion-implanted fused silica,” J. Appl. Phys. 45, 167–174 (1974).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[CrossRef]

J. Non-Cryst. Solids (5)

J. Ruller and E. J. Friebele, “The effect of γ-radiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

G. Williams, “Molecular motion in glass-forming systems,” J. Non-Cryst. Solids 131, 1–12 (1991), and references contained therein.
[CrossRef]

G. W. Scherer, “Theories of relaxation,” J. Non-Cryst. Solids 123, 75–89 (1990).
[CrossRef]

N. Kitamura, Y. Toguchi, S. Funo, H. Yamashita, and M. Kinoshita, “Refractive index of densified silica glass,” J. Non-Cryst. Solids 159, 241–245 (1993).
[CrossRef]

J. Schroeder, “Brillouin scattering and Pockels coefficients in silicate glasses,” J. Non-Cryst. Solids 40, 549–566 (1980).
[CrossRef]

J. Vac. Sci. Technol. B (1)

R. Schenker, P. Schermerhorn, and W. G. Oldham, “Deep-ultraviolet damage to fused silica,” J. Vac. Sci. Technol. B 12, 3275–3279 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

G. W. Arnold and W. Dale Compton, “Radiation effects in silica at low temperature,” Phys. Rev. 116, 802–811 (1959).
[CrossRef]

Phys. Rev. B (1)

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Phys. Rev. B 33, 2972–2974 (1986).
[CrossRef]

Phys. Rev. Lett. (2)

P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2,” Phys. Rev. Lett. 70, 3588–3591 (1993).
[CrossRef] [PubMed]

A. J. Fisher, W. Hayes, and A. M. Stoneham, “Structure of the self-trapped exciton in quartz,” Phys. Rev. Lett. 64, 2667–2670 (1990).
[CrossRef] [PubMed]

Proc. SPIE (4)

P. M. Schermerhorn, “Excimer laser damage testing of optical materials,” in Excimer Lasers: Applications, Beam Delivery Systems, and Laser Design, Proc. SPIE 1835, 70–79 (1992).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, P. Schermerhorn, D. Fladd, and W. G. Oldham, “Ultraviolet damage properties of various fused silica materials,” in Laser Induced Damage in Optical Materials, Proc. SPIE 2428, 458–468 (1995).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, “Degradation of fused silica at 193-nm and 213-nm,” in Optical Laser Microlithography VIII, Proc. SPIE 2440, 118–125 (1995).
[CrossRef]

R. Schenker, F. Piao, and W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography, Proc. SPIE 2726, 698–707 (1996).
[CrossRef]

Other (3)

W. Primak and R. Kampwirth, “The radiation compaction of vitreous silica,” J. Appl. Phys. 39, 5651–5658 (1968); also W. Primak, “Dependence of the compaction of vitreous silica on the ionization dose,” J. Appl. Phys. 49, 2572 (1977).
[CrossRef]

W. Primak, The Compacted States of Vitreous Silica, Vol. 4 of Studies in Radiation Effects in Solids, G. J. Dienes and L. T. Chadderton, eds. (Gordon & Breach, New York, 1975), pp. 91–102.

K. I. Ngai and A. F. Yee, “Nonlinear viscoelastic behavior of glassy polymers,” in Relaxations in Complex Systems, K. I. Ngai and G. B. Wright, eds. (U.S. Government Printing Office, Washington, D.C., 1985), pp. 145–164.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental setup for 193-nm exposure of HPFS samples and in situ measurement of 193-nm laser-induced absorption. PMT, photomultiplier tube.

Fig. 2
Fig. 2

Typical interferometer measurement perspective over the exposed region for the specific sample geometry. ZYGO Mark GPI, λ=633 nm.

Fig. 3
Fig. 3

Schematic of the experimental setup for measuring birefringence of the damaged region.

Fig. 4
Fig. 4

Schematic representation of the densification phenomenon: (a) initial exposure region of sample, (b) idealized unconstrained deformation, and (c) actual constrained deformation.

Fig. 5
Fig. 5

Model values of densification (δρ/ρ) along the line of maximum light intensity from front to back faces of the sample. Input densification was δρ/ρ=20×10-6.

Fig. 6
Fig. 6

Representative finite-element model results: (a) contours of isostrain, displayed on finite-element grid, showing displacement perpendicular to laser-exposed surface; (b) computed wave-front distortion (633-nm waves) computed from Eq. (9) versus the distance across the damage region on the sample; and (c) birefringence angle θ computed from Eq. (13) versus the distance across the damage region on the sample. Input densification was δρ/ρ=20×10-6.

Fig. 7
Fig. 7

(a) Typical measured wave-front distortion for transmission through the damaged sample in the direction of the laser; (b) map of birefringence angle θ through same region of sample.

Fig. 8
Fig. 8

(a) Wave-front distortion (waves at 633 nm) versus the number of pulses N at three values of fluence per pulse. (b) Measured birefringence θ versus the number of pulses N at the same three values of fluence per pulse. Circles, 43 mJ/cm2; squares, 32 mJ/cm2; and triangles, 21 mJ/cm2.

Fig. 9
Fig. 9

Wave-front distortion (waves at 633 nm) versus the birefringence angle for the data presented in Figs. 8(a) and 8(b).

Fig. 10
Fig. 10

(a) Birefringence versus the number of pulses at 25 mJ/cm2 for a sample that has the following thermal treatments before exposure: unannealed (open circles), boule annealed (squares), (1200 °C/10°)/hr (filled circles), and 1000 °C air quench (triangles). (b) Same data plotted as log birefringence versus the log of number of pulses times the square of the pulse fluence.

Fig. 11
Fig. 11

Correlation of the measured birefringence with the interferometrically measured wave front for all the data points of Fig. 10. The slope is 0.049 wave/degree, to be compared with the finite-element model estimate of 0.051 from Eqs. (1) and (2).

Fig. 12
Fig. 12

(a) Wave-front distortion data from Fig. 8(a) plotted versus the pulse fluence squared, times the number of pulses; filled circles 43 mJ/cm2, squares 32 mJ/cm2, open circles 21 mJ/cm2. (b) Same data plotted as log–log; inset is the data taken from Fig. 4 of Ref. 12.

Fig. 13
Fig. 13

Estimate of wave-front distortion under 10-year-life condition, 1010 pulses at 0.5 mJ/cm2: (a) stepper lens geometry, (b) exposure pattern and (c) computed variation δ(nl).

Fig. 14
Fig. 14

Calculated δρ/ρ versus the I2N for representative HPFS.

Tables (2)

Tables Icon

Table 1 Comparison of Model Predictions of Damage per Centimeter for Two Different Exposure Orientations for Same Exposure; Input (δρ/ρ)P=20 ppm

Tables Icon

Table 2 Constants Used in Finite-Element Elastic Modela

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

δ(nl)(waves)at633nm=0.00587δρρP(ppm),
birefringence (BR)(°) at 633nm=0.114δρρP(ppm).
δρρP=a(I2N)b
dρdt=kI2(ρeq-ρ),
(ρ-ρ0)(ρeq-ρ0)=1-exp(-kI2t).
(ρ-ρ0)(ρeq-ρ0)=1-Σci exp(-kit).
dρdt=W(t)(ρ-ρ0).
(ρ-ρ0)(ρeq-ρ0)=1-exp(-τβ),
δ(nl)(x, y)=2(n0-1)uz(x, y)+(n)(δρ/ρ)01/2+uz(x, y)δρρ(x, y, z)dz,
δρρ=-δVV=-uxx+uyy+uzz.
0l+uz(x, y)δρρ(x, y, z)dz-0l+uz(x, y)3 uzzdz=-3uz,
δ(nl)(x, y)2(n0-1)-3 (n)(δρ/ρ)uz(x, y).
θ=12tan-1cos(2ϕ)sin(δ)sin2(2ϕ)+cos2(2ϕ)cos(δ).
tan(ϕ)=-sd+(d2+s2)1/2
θ12δ=12Cd=C0l/2(σyy-σxx)dz,

Metrics