Abstract

A simple extension of a commercial laser system permits the generation of intense femtosecond infrared pulses near 3 µm by optical parametric generation and amplification at kilohertz repetition rates. Pulse durations of a few hundred femtoseconds and pulse energies of tens of microjoules can be routinely produced, thus permitting nonlinear optical studies of molecular vibrations.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, and M. D. Fayer, “Picosecond infrared vibrational photon echoes in a liquid and glass using a free electron laser,” Phys. Rev. Lett. 70, 2718–2721 (1993).
    [CrossRef] [PubMed]
  2. H. Vanherzeele, “Generation of tunable infrared picosecond pulses at 100 MHz by difference frequency mixing in KTiOPO4,” Opt. Lett. 14, 728–730 (1989).
    [CrossRef] [PubMed]
  3. P. C. M. Planken, E. Snoeks, L. D. Noordam, H. G. Muller, and H. B. van den Linden van den Heuvell, “Generation of intense sub-picosecond pulses in the mid-infrared,” Opt. Commun. 85, 31–35 (1991).
    [CrossRef]
  4. A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
    [CrossRef]
  5. A. Fendt, W. Kranitzky, A. Lauberau, and W. Kaiser, “Efficient generation of tunable subpicosecond pulses in the infrared,” Opt. Commun. 28, 142–146 (1979).
    [CrossRef]
  6. T. M. Jedju and L. Rothberg, “Tunable femtosecond radiation in the mid-infrared for time-resolved absorption in semiconductors,” Appl. Opt. 27, 615–618 (1988).
    [CrossRef] [PubMed]
  7. R. Laenen, H. Graener, and A. Lauberau, “Broadly tunable femtosecond pulses generated by optical parametric oscillation,” Opt. Lett. 15, 971–973 (1990).
    [CrossRef] [PubMed]
  8. I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
    [CrossRef]
  9. V. Petrov and F. Noack, “Mid-infrared femtosecond optical parametric amplification in potassium niobate,” Opt. Lett. 21, 1576–1578 (1996).
    [CrossRef] [PubMed]
  10. A. Lauberau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
    [CrossRef]
  11. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Tarpani, and R. Righini, “Traveling-wave parametric generation of widely tunable highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222–2232 (1993).
    [CrossRef]
  12. J. D. Bierlein and H. Vanheerzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
    [CrossRef]
  13. A. Nebel, C. Fallnich, R. Beigang, and R. Wallenstein, “Noncritically phase-matched continuous-wave mode-locked singly resonant optical parametric oscillator synchronously pumped by a Ti:sapphire laser,” J. Opt. Soc. Am. B 10, 2195–2200 (1993).
    [CrossRef]
  14. S. W. McCahon, S. A. Anson, D.-J. Jang, and Th. F. Boggess, “Generation of 3–4-μm femtosecond pulses from a synchronously pumped, critically phase-matched KTiOPO4 optical parametric oscillator,” Opt. Lett. 20, 2309–2311 (1995).
    [CrossRef]
  15. G. R. Holtom, R. A. Crowell, and X. S. Xie, “High-repetition-rate femtosecond optical parametric oscillator-amplifier system near 3 μm,” J. Opt. Soc. Am. B 12, 1723–1731 (1995).
    [CrossRef]
  16. V. Petrov and F. Noack, “Tunable femtosecond optical para-metric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214–2221 (1995).
    [CrossRef]
  17. D. E. Gargson, D. S. Alvi, and G. L. Richmond, “Tunable picosecond infrared laser system based on parametric amplification in KTP with a Ti:sapphire amplifier,” Opt. Lett. 20, 1991–1993 (1995).
    [CrossRef]
  18. H. Vanherzeele, J. D. Bierlein, and F. C. Zumsteg, “Index of refraction measurements and parametric generation in hydrothermally grown KTiOPO4,” Appl. Opt. 27, 3314–3315 (1988).
    [CrossRef] [PubMed]
  19. H. J. Bakker, P. C. M. Planken, and H. G. Muller, “Numerical calculation of optical frequency conversion processes: a new approach,” J. Opt. Soc. Am. B 6, 1665–1672 (1989).
    [CrossRef]
  20. J. D. Bierlein, H. Vanheerzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
    [CrossRef]
  21. W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
    [CrossRef]
  22. A. H. Kung, “Efficient conversion of high-power narrow-band Ti:sapphire laser radiation to the mid-infrared in KTiOAsO4,” Opt. Lett. 20, 1107–1109 (1995).
    [CrossRef] [PubMed]
  23. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-repetition-rate femtosecond optical parametric oscillator based on KNbO3,” Opt. Lett. 20, 680–682 (1995).
    [CrossRef] [PubMed]
  24. D. W. Anthon and C. D. Crowder, “Wavelength dependent phase matching in KTP,” Appl. Opt. 27, 2650–2652 (1988).
    [CrossRef] [PubMed]

1996 (1)

1995 (6)

1994 (2)

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
[CrossRef]

1993 (3)

1991 (1)

P. C. M. Planken, E. Snoeks, L. D. Noordam, H. G. Muller, and H. B. van den Linden van den Heuvell, “Generation of intense sub-picosecond pulses in the mid-infrared,” Opt. Commun. 85, 31–35 (1991).
[CrossRef]

1990 (1)

1989 (4)

1988 (3)

1979 (1)

A. Fendt, W. Kranitzky, A. Lauberau, and W. Kaiser, “Efficient generation of tunable subpicosecond pulses in the infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

1978 (2)

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

A. Lauberau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Alvi, D. S.

Anson, S. A.

Anthon, D. W.

Bakker, H. J.

Ballman, A. A.

J. D. Bierlein, H. Vanheerzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
[CrossRef]

Banfi, G. P.

Bayanov, I. M.

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

Beigang, R.

Bierlein, J. D.

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
[CrossRef]

J. D. Bierlein and H. Vanheerzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
[CrossRef]

J. D. Bierlein, H. Vanheerzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
[CrossRef]

H. Vanherzeele, J. D. Bierlein, and F. C. Zumsteg, “Index of refraction measurements and parametric generation in hydrothermally grown KTiOPO4,” Appl. Opt. 27, 3314–3315 (1988).
[CrossRef] [PubMed]

Boggess, Th. F.

Bosenberg, W. R.

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
[CrossRef]

Bosshard, C.

Chen, S.

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, and M. D. Fayer, “Picosecond infrared vibrational photon echoes in a liquid and glass using a free electron laser,” Phys. Rev. Lett. 70, 2718–2721 (1993).
[CrossRef] [PubMed]

Cheng, L. K.

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
[CrossRef]

Crowder, C. D.

Crowell, R. A.

Danielius, R.

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Tarpani, and R. Righini, “Traveling-wave parametric generation of widely tunable highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222–2232 (1993).
[CrossRef]

Di Tarpani, P.

Fallnich, C.

Fayer, M. D.

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, and M. D. Fayer, “Picosecond infrared vibrational photon echoes in a liquid and glass using a free electron laser,” Phys. Rev. Lett. 70, 2718–2721 (1993).
[CrossRef] [PubMed]

Fendt, A.

A. Fendt, W. Kranitzky, A. Lauberau, and W. Kaiser, “Efficient generation of tunable subpicosecond pulses in the infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

Gargson, D. E.

Graener, H.

Greenfield, S. R.

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, and M. D. Fayer, “Picosecond infrared vibrational photon echoes in a liquid and glass using a free electron laser,” Phys. Rev. Lett. 70, 2718–2721 (1993).
[CrossRef] [PubMed]

Günter, P.

Heinz, P.

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

Holtom, G. R.

Jang, D.-J.

Jedju, T. M.

Kaiser, W.

A. Fendt, W. Kranitzky, A. Lauberau, and W. Kaiser, “Efficient generation of tunable subpicosecond pulses in the infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

A. Lauberau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Kranitzky, W.

A. Fendt, W. Kranitzky, A. Lauberau, and W. Kaiser, “Efficient generation of tunable subpicosecond pulses in the infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

Kung, A. H.

Laenen, R.

Lauberau, A.

R. Laenen, H. Graener, and A. Lauberau, “Broadly tunable femtosecond pulses generated by optical parametric oscillation,” Opt. Lett. 15, 971–973 (1990).
[CrossRef] [PubMed]

A. Fendt, W. Kranitzky, A. Lauberau, and W. Kaiser, “Efficient generation of tunable subpicosecond pulses in the infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

A. Lauberau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Laubereau, A.

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

McCahon, S. W.

Muller, H. G.

P. C. M. Planken, E. Snoeks, L. D. Noordam, H. G. Muller, and H. B. van den Linden van den Heuvell, “Generation of intense sub-picosecond pulses in the mid-infrared,” Opt. Commun. 85, 31–35 (1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and H. G. Muller, “Numerical calculation of optical frequency conversion processes: a new approach,” J. Opt. Soc. Am. B 6, 1665–1672 (1989).
[CrossRef]

Nebel, A.

Noack, F.

Noordam, L. D.

P. C. M. Planken, E. Snoeks, L. D. Noordam, H. G. Muller, and H. B. van den Linden van den Heuvell, “Generation of intense sub-picosecond pulses in the mid-infrared,” Opt. Commun. 85, 31–35 (1991).
[CrossRef]

Petrov, V.

Piskarskas, A.

Planken, P. C. M.

P. C. M. Planken, E. Snoeks, L. D. Noordam, H. G. Muller, and H. B. van den Linden van den Heuvell, “Generation of intense sub-picosecond pulses in the mid-infrared,” Opt. Commun. 85, 31–35 (1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and H. G. Muller, “Numerical calculation of optical frequency conversion processes: a new approach,” J. Opt. Soc. Am. B 6, 1665–1672 (1989).
[CrossRef]

Richmond, G. L.

Righini, R.

Rothberg, L.

Seilmeier, A.

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

Snoeks, E.

P. C. M. Planken, E. Snoeks, L. D. Noordam, H. G. Muller, and H. B. van den Linden van den Heuvell, “Generation of intense sub-picosecond pulses in the mid-infrared,” Opt. Commun. 85, 31–35 (1991).
[CrossRef]

Spanner, K.

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

Spence, D. E.

Stabinis, A.

Tang, C. L.

Tokmakoff, A.

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, and M. D. Fayer, “Picosecond infrared vibrational photon echoes in a liquid and glass using a free electron laser,” Phys. Rev. Lett. 70, 2718–2721 (1993).
[CrossRef] [PubMed]

van den Linden van den Heuvell, H. B.

P. C. M. Planken, E. Snoeks, L. D. Noordam, H. G. Muller, and H. B. van den Linden van den Heuvell, “Generation of intense sub-picosecond pulses in the mid-infrared,” Opt. Commun. 85, 31–35 (1991).
[CrossRef]

Vanheerzeele, H.

J. D. Bierlein, H. Vanheerzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
[CrossRef]

J. D. Bierlein and H. Vanheerzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
[CrossRef]

Vanherzeele, H.

Wallenstein, R.

Wielandy, S.

Xie, X. S.

Zimdars, D.

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, and M. D. Fayer, “Picosecond infrared vibrational photon echoes in a liquid and glass using a free electron laser,” Phys. Rev. Lett. 70, 2718–2721 (1993).
[CrossRef] [PubMed]

Zumsteg, F. C.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. D. Bierlein, H. Vanheerzeele, and A. A. Ballman, “Linear and nonlinear optical properties of flux-grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
[CrossRef]

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65, 2765–2767 (1994).
[CrossRef]

J. Opt. Soc. Am. B (6)

Opt. Commun. (4)

I. M. Bayanov, R. Danielius, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm generated by an all-solid-state laser system,” Opt. Commun. 113, 99–104 (1994).
[CrossRef]

P. C. M. Planken, E. Snoeks, L. D. Noordam, H. G. Muller, and H. B. van den Linden van den Heuvell, “Generation of intense sub-picosecond pulses in the mid-infrared,” Opt. Commun. 85, 31–35 (1991).
[CrossRef]

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

A. Fendt, W. Kranitzky, A. Lauberau, and W. Kaiser, “Efficient generation of tunable subpicosecond pulses in the infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. Lett. (1)

D. Zimdars, A. Tokmakoff, S. Chen, S. R. Greenfield, and M. D. Fayer, “Picosecond infrared vibrational photon echoes in a liquid and glass using a free electron laser,” Phys. Rev. Lett. 70, 2718–2721 (1993).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. Lauberau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy (triangles) and pulse length (dots) of the infrared pulses versus wavelength. The energy was measured with a thermal detector behind a long-pass optical filter (transmission approximately 70%).

Fig. 2
Fig. 2

Spectra of the generated infrared pulses measured with a scanning monochromator.

Fig. 3
Fig. 3

Noncollinear autocorrelation measurements of the infrared pulses with a 5-mm LiNbO3 crystal. Calculations showed that the group-velocity dispersion in the crystal will broaden the autocorrelation traces by less than 10 fs when the pulses overlap within the first 3 mm of the crystal.

Fig. 4
Fig. 4

(A) Calculated spectra and (B) autocorrelation traces of the generated infrared pulses with a (signal) seed pulse of 1090 nm, a pump of 800 nm, and Seilmeier equation coefficients from Ref. 24. It is assumed that the longer wavelengths are generated with the KTP crystals in a slightly phase-mismatched configuration, in the case of 3200-nm Δk=-40 cm-1. For the 3400-nm configuration the mismatch of the first crystal is smaller, Δk=-70 cm-1, than of the second, Δk=-80 cm-1.

Metrics