Abstract

We experimentally investigated the temporal and spectral profiles of the four-wave mixing (FWM) signals from 350-µm-thick undoped InP at various temperatures when the laser was tuned from the exciton resonance to 100 meV below the band gap. The temporal and spectral shapes of the observed FWM signals well below the band gap were nearly consistent with those of the excitation laser pulse and exhibited significantly different behavior from the excitonic properties in thin samples. Furthermore, we observed temperature-independent large blue shifts of the spectrally resolved FWM signals far below the band gap with respect to the excitation laser spectrum when the time delay moved from positive to negative. Based on our experimental observations, we conclude that this behavior can be explained not simply by the excitonic effects but by the instantaneously created virtual states and the frequency-broadening effect.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures

D. S. Chemla and D. A. B. Miller
J. Opt. Soc. Am. B 2(7) 1155-1173 (1985)

Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells

Pranai Vasudev, Jian-Hua Jiang, and Sajeev John
Opt. Express 24(13) 14010-14035 (2016)

Femtosecond and picosecond nondegenerate four-wave mixing in GaAs/AlGaAs multiple quantum wells by two independently tunable lasers

J. S. Yahng, Y. H. Ahn, J. Y. Sohn, and D. S. Kim
J. Opt. Soc. Am. B 18(5) 714-721 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription