Abstract

Photorefractive KNbO3:Fe is characterized by monitoring of the electric currents induced in the crystal that are due to applied illumination. Important photorefractive parameter values, such as the Maxwell relaxation time, carrier-diffusion length, carrier-screening length, and the magnitude of the photogalvanic current are thereby estimated.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
    [CrossRef]
  2. V. Vinetskii and N. Kukhtarev, “Theory of the conductivity induced by recording holographic grating in nonmetallic crystals,” Sov. Phys. Solid State 16, 2414 (1975).
  3. G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1558 (1986).
  4. N. Noginova, N. Kukhtarev, M. A. Noginov, Bo Su Chen, H. J. Caulfield, and P. Venkateswarlu, “Holographic current study in laser and photorefractive crystals,” J. Opt. Soc. Am. B 13, 2622 (1996).
    [CrossRef]
  5. P. P. Banerjee, H.-L. Yu, D. A. Gregory, N. Kukhtarev, and H. J. Caulfield, “Self-organization of scattering in photorefractive KNbO3 into reconfigurable hexagonal spot array,” Opt. Lett. 20, 10 (1995).
    [CrossRef] [PubMed]
  6. N. V. Kukhtarev, T. Kukhtareva, H. J. Caulfield, P. Banerjee, H.-L. Yu, and L. Hesselink, “Broadband dynamic, holographically self recorded, and static hexagonal scattering patterns in photorefractive KNbO3:Fe,” Opt. Eng. 34, 2261 (1995).
    [CrossRef]
  7. T. Honda, “Hexagonal pattern formation due to counterpropagation in KNbO3,” Opt. Lett. 18, 598 (1993).
    [CrossRef]
  8. M. Saffman and A. V. Mamaev, “Pattern formation in anisotropic nonlinear media,” in Optics and Fluid Dynamics Annual Progress Report for 1995 (Risø National Laboratory, Roskilde, Denmark, 1995), p. 57.
  9. W. Ruppel, R. Von Baltz, and P. Wurfel, “The origin of the photo-emf in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109 (1982).
    [CrossRef]
  10. K. G. Belabaev, V. P. Kondilenko, N. V. Kukhtarev, V. B. Markov, S. G. Odulov, and M. S. Soskin, “Transformation of phases and intensities of light beams during recording of dynamic grating in LiNbO3:Fe crystals,” Sov. Phys. Tech. Phys. 25, 1502 (1980).
  11. A. M. Prokhorov and Yu. S. Kuzminov, Ferroelectric Crystals for Laser Radiation Control (Hilger, Bristol, 1990), p. 11.
  12. P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of electron and hole drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106 (1997).
    [CrossRef]

1997 (1)

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of electron and hole drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106 (1997).
[CrossRef]

1996 (1)

1995 (2)

P. P. Banerjee, H.-L. Yu, D. A. Gregory, N. Kukhtarev, and H. J. Caulfield, “Self-organization of scattering in photorefractive KNbO3 into reconfigurable hexagonal spot array,” Opt. Lett. 20, 10 (1995).
[CrossRef] [PubMed]

N. V. Kukhtarev, T. Kukhtareva, H. J. Caulfield, P. Banerjee, H.-L. Yu, and L. Hesselink, “Broadband dynamic, holographically self recorded, and static hexagonal scattering patterns in photorefractive KNbO3:Fe,” Opt. Eng. 34, 2261 (1995).
[CrossRef]

1993 (1)

1986 (1)

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1558 (1986).

1982 (1)

W. Ruppel, R. Von Baltz, and P. Wurfel, “The origin of the photo-emf in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109 (1982).
[CrossRef]

1980 (1)

K. G. Belabaev, V. P. Kondilenko, N. V. Kukhtarev, V. B. Markov, S. G. Odulov, and M. S. Soskin, “Transformation of phases and intensities of light beams during recording of dynamic grating in LiNbO3:Fe crystals,” Sov. Phys. Tech. Phys. 25, 1502 (1980).

1979 (1)

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[CrossRef]

1975 (1)

V. Vinetskii and N. Kukhtarev, “Theory of the conductivity induced by recording holographic grating in nonmetallic crystals,” Sov. Phys. Solid State 16, 2414 (1975).

Banerjee, P.

N. V. Kukhtarev, T. Kukhtareva, H. J. Caulfield, P. Banerjee, H.-L. Yu, and L. Hesselink, “Broadband dynamic, holographically self recorded, and static hexagonal scattering patterns in photorefractive KNbO3:Fe,” Opt. Eng. 34, 2261 (1995).
[CrossRef]

Banerjee, P. P.

Belabaev, K. G.

K. G. Belabaev, V. P. Kondilenko, N. V. Kukhtarev, V. B. Markov, S. G. Odulov, and M. S. Soskin, “Transformation of phases and intensities of light beams during recording of dynamic grating in LiNbO3:Fe crystals,” Sov. Phys. Tech. Phys. 25, 1502 (1980).

Bernasconi, P.

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of electron and hole drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106 (1997).
[CrossRef]

Biaggio, I.

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of electron and hole drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106 (1997).
[CrossRef]

Caulfield, H. J.

Chen, Bo Su

Gregory, D. A.

Gunter, P.

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of electron and hole drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106 (1997).
[CrossRef]

Hesselink, L.

N. V. Kukhtarev, T. Kukhtareva, H. J. Caulfield, P. Banerjee, H.-L. Yu, and L. Hesselink, “Broadband dynamic, holographically self recorded, and static hexagonal scattering patterns in photorefractive KNbO3:Fe,” Opt. Eng. 34, 2261 (1995).
[CrossRef]

Honda, T.

Kondilenko, V. P.

K. G. Belabaev, V. P. Kondilenko, N. V. Kukhtarev, V. B. Markov, S. G. Odulov, and M. S. Soskin, “Transformation of phases and intensities of light beams during recording of dynamic grating in LiNbO3:Fe crystals,” Sov. Phys. Tech. Phys. 25, 1502 (1980).

Kukhtarev, N.

N. Noginova, N. Kukhtarev, M. A. Noginov, Bo Su Chen, H. J. Caulfield, and P. Venkateswarlu, “Holographic current study in laser and photorefractive crystals,” J. Opt. Soc. Am. B 13, 2622 (1996).
[CrossRef]

P. P. Banerjee, H.-L. Yu, D. A. Gregory, N. Kukhtarev, and H. J. Caulfield, “Self-organization of scattering in photorefractive KNbO3 into reconfigurable hexagonal spot array,” Opt. Lett. 20, 10 (1995).
[CrossRef] [PubMed]

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[CrossRef]

V. Vinetskii and N. Kukhtarev, “Theory of the conductivity induced by recording holographic grating in nonmetallic crystals,” Sov. Phys. Solid State 16, 2414 (1975).

Kukhtarev, N. V.

N. V. Kukhtarev, T. Kukhtareva, H. J. Caulfield, P. Banerjee, H.-L. Yu, and L. Hesselink, “Broadband dynamic, holographically self recorded, and static hexagonal scattering patterns in photorefractive KNbO3:Fe,” Opt. Eng. 34, 2261 (1995).
[CrossRef]

K. G. Belabaev, V. P. Kondilenko, N. V. Kukhtarev, V. B. Markov, S. G. Odulov, and M. S. Soskin, “Transformation of phases and intensities of light beams during recording of dynamic grating in LiNbO3:Fe crystals,” Sov. Phys. Tech. Phys. 25, 1502 (1980).

Kukhtareva, T.

N. V. Kukhtarev, T. Kukhtareva, H. J. Caulfield, P. Banerjee, H.-L. Yu, and L. Hesselink, “Broadband dynamic, holographically self recorded, and static hexagonal scattering patterns in photorefractive KNbO3:Fe,” Opt. Eng. 34, 2261 (1995).
[CrossRef]

Markov, V.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Markov, V. B.

K. G. Belabaev, V. P. Kondilenko, N. V. Kukhtarev, V. B. Markov, S. G. Odulov, and M. S. Soskin, “Transformation of phases and intensities of light beams during recording of dynamic grating in LiNbO3:Fe crystals,” Sov. Phys. Tech. Phys. 25, 1502 (1980).

Noginov, M. A.

Noginova, N.

Odulov, S.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Odulov, S. G.

K. G. Belabaev, V. P. Kondilenko, N. V. Kukhtarev, V. B. Markov, S. G. Odulov, and M. S. Soskin, “Transformation of phases and intensities of light beams during recording of dynamic grating in LiNbO3:Fe crystals,” Sov. Phys. Tech. Phys. 25, 1502 (1980).

Ruppel, W.

W. Ruppel, R. Von Baltz, and P. Wurfel, “The origin of the photo-emf in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109 (1982).
[CrossRef]

Soskin, M.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[CrossRef]

Soskin, M. S.

K. G. Belabaev, V. P. Kondilenko, N. V. Kukhtarev, V. B. Markov, S. G. Odulov, and M. S. Soskin, “Transformation of phases and intensities of light beams during recording of dynamic grating in LiNbO3:Fe crystals,” Sov. Phys. Tech. Phys. 25, 1502 (1980).

Stepanov, S. I.

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1558 (1986).

Trofimov, G. S.

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1558 (1986).

Venkateswarlu, P.

Vinetskii, V.

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[CrossRef]

V. Vinetskii and N. Kukhtarev, “Theory of the conductivity induced by recording holographic grating in nonmetallic crystals,” Sov. Phys. Solid State 16, 2414 (1975).

Von Baltz, R.

W. Ruppel, R. Von Baltz, and P. Wurfel, “The origin of the photo-emf in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109 (1982).
[CrossRef]

Wurfel, P.

W. Ruppel, R. Von Baltz, and P. Wurfel, “The origin of the photo-emf in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109 (1982).
[CrossRef]

Yu, H.-L.

P. P. Banerjee, H.-L. Yu, D. A. Gregory, N. Kukhtarev, and H. J. Caulfield, “Self-organization of scattering in photorefractive KNbO3 into reconfigurable hexagonal spot array,” Opt. Lett. 20, 10 (1995).
[CrossRef] [PubMed]

N. V. Kukhtarev, T. Kukhtareva, H. J. Caulfield, P. Banerjee, H.-L. Yu, and L. Hesselink, “Broadband dynamic, holographically self recorded, and static hexagonal scattering patterns in photorefractive KNbO3:Fe,” Opt. Eng. 34, 2261 (1995).
[CrossRef]

Zgonik, M.

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of electron and hole drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106 (1997).
[CrossRef]

Ferroelectrics (2)

N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, and V. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[CrossRef]

W. Ruppel, R. Von Baltz, and P. Wurfel, “The origin of the photo-emf in ferroelectric and non-ferroelectric materials,” Ferroelectrics 43, 109 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

N. V. Kukhtarev, T. Kukhtareva, H. J. Caulfield, P. Banerjee, H.-L. Yu, and L. Hesselink, “Broadband dynamic, holographically self recorded, and static hexagonal scattering patterns in photorefractive KNbO3:Fe,” Opt. Eng. 34, 2261 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

P. Bernasconi, I. Biaggio, M. Zgonik, and P. Gunter, “Anisotropy of electron and hole drift mobility in KNbO3 and BaTiO3,” Phys. Rev. Lett. 78, 106 (1997).
[CrossRef]

Sov. Phys. Solid State (2)

V. Vinetskii and N. Kukhtarev, “Theory of the conductivity induced by recording holographic grating in nonmetallic crystals,” Sov. Phys. Solid State 16, 2414 (1975).

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1558 (1986).

Sov. Phys. Tech. Phys. (1)

K. G. Belabaev, V. P. Kondilenko, N. V. Kukhtarev, V. B. Markov, S. G. Odulov, and M. S. Soskin, “Transformation of phases and intensities of light beams during recording of dynamic grating in LiNbO3:Fe crystals,” Sov. Phys. Tech. Phys. 25, 1502 (1980).

Other (2)

A. M. Prokhorov and Yu. S. Kuzminov, Ferroelectric Crystals for Laser Radiation Control (Hilger, Bristol, 1990), p. 11.

M. Saffman and A. V. Mamaev, “Pattern formation in anisotropic nonlinear media,” in Optics and Fluid Dynamics Annual Progress Report for 1995 (Risø National Laboratory, Roskilde, Denmark, 1995), p. 57.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Experimental setup for observation of the hexagonal diffraction pattern; (b) the hexagonal diffraction pattern in KNbO3 (adapted from Ref. 5).

Fig. 2
Fig. 2

(a) Experimental setup for observation of the ring-shaped diffraction pattern; (b) the ring-shaped diffraction pattern in KNbO3.

Fig. 3
Fig. 3

(a) Experimental setup for registration of the transient photocurrent and diffracted intensity; BS is a beam splitter, M1 and M2 are mirrors; the mirror M2 is attached to the speaker. (b) Orientation of the crystal in experiment 1. (c) Orientation of the crystal in experiment 2.

Fig. 4
Fig. 4

Typical transient photocurrent (curve b) and diffracted intensity (curve a) responses to the steplike modulation (curve c) of the mirror position.

Fig. 5
Fig. 5

(a) Amplitude and (b) the relaxation time of the transient photocurrent in KNbO3 in dependence of the grating period at 0° orientation of the crystal: experiment (squares) and theory (solid curves); τM=790 ms, 2πLD=1 µm, and 2πLS =1.7 µm.

Fig. 6
Fig. 6

(a) Amplitude and (b) the relaxation time of the transient diffracted intensity in KNbO3 in dependence of the grating period at 0° orientation of the crystal.

Fig. 7
Fig. 7

(a) Decay-time of the transient current and (b) transient diffracted intensity in dependence of grating period L at 90° orientation of the crystal; the solid curve denotes theory with τM =200 ms, 2πLD=0.4 µm, and 2πLS=0.7 µm.

Fig. 8
Fig. 8

(a) Amplitudes of the transient current and (b) diffracted intensity in dependence of the grating period at 90° orientation of the crystal; the solid curve denotes theory with τM=200 ms, 2πLD=0.4 µm, and 2πLS=0.7 µm.

Fig. 9
Fig. 9

Experimental setup for photogalvanic current measurements.

Fig. 10
Fig. 10

Photoinduced electric current in KNbO3 at the chopping of the illuminating beam.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

j=jmax exp(-t/τR),
jmax-L3[L2+(2πLD)2][L2+(2πLS)2]
τR=τM1+(2πLD)2/L21+(2πLS)2/L2,

Metrics