Abstract

The possibility of providing long-term storage of a binary sequence of pulses circulating in a fiber loop is discussed. The regeneration of the sequence is achieved by a fiber logic gate based on stimulated Raman scattering. Estimations show that a possible pulse repetition rate of 1010 Hz for the stimulated-Raman-scattering gate operation can be expected for an average pump power of 1 W. The circulation of the binary sequence of 100-ps pulses was observed during 10 min in a loop 870 m long. It corresponds to more than 106 round trips around the loop.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Jackson and H. J. Shaw, “Fiber-optic delay line signal processing,” in Optical Signal Processing, J. L. Horner, ed. (Academic, New York, 1987), pp. 431–476.
  2. N. A. Whitaker, M. C. Gabriel, Jr., H. Avramopoulos, and A. Huang, “All-optical, all-fiber circulating shift register with an inverter,” Opt. Lett. 16, 1999–2001 (1991).
    [CrossRef] [PubMed]
  3. M. Vaziri, K. Ahn, B. C. Burnett, G. R. Williams, M. N. Islam, K. O. Hill, and B. Malo, “Ultrafast low latency soliton logic gate using low-birefringence polarization-maintaining fiber,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 264.
  4. C. R. Doerr, W. S. Wong, H. A. Haus, and E. Ippen, “Additive-pulse mode locking/limiting storage ring,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper, pp. 27–28.
  5. E. A. Kuzin, M. A. Maksutenko, M. P. Petrov, and V. V. Spirin, “All-optical fiber logic NOR gate using stimulated Raman scattering,” Opt. Comput. Process. 1, 163–167 (1991).
  6. V. I. Belotitskii, E. A. Kuzin, M. P. Petrov, and V. V. Spirin, “Demonstration of over 100 million round trips in recirculating fibre loop with all-optical regeneration,” Electron. Lett. 29, 49–50 (1993).
    [CrossRef]
  7. S. Akhmanov, V. Vysloukh, and A. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).
  8. E. A. Kuzin, V. I. Belotitskii, M. P. Petrov, and V. V. Spirin, “Long term storage of a bit stream of pulses through stimulated Raman scattering,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 106–107.
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  10. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [CrossRef] [PubMed]
  11. J. W. Fleming, “Material and mode dispersion in GeO2, B2O3, SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).
    [CrossRef]
  12. V. V. Spirin, M. P. Petrov, E. A. Kuzin, and V. I. Belotitskii, “Investigation of the threshold of the fiber ring laser at the zero dispersion wavelength range,” Zh. Tekh. Fiz. 64, 151–157 (1994) (in Russian).

1993 (1)

V. I. Belotitskii, E. A. Kuzin, M. P. Petrov, and V. V. Spirin, “Demonstration of over 100 million round trips in recirculating fibre loop with all-optical regeneration,” Electron. Lett. 29, 49–50 (1993).
[CrossRef]

1991 (1)

1976 (1)

J. W. Fleming, “Material and mode dispersion in GeO2, B2O3, SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).
[CrossRef]

1972 (1)

Avramopoulos, H.

Belotitskii, V. I.

V. I. Belotitskii, E. A. Kuzin, M. P. Petrov, and V. V. Spirin, “Demonstration of over 100 million round trips in recirculating fibre loop with all-optical regeneration,” Electron. Lett. 29, 49–50 (1993).
[CrossRef]

Fleming, J. W.

J. W. Fleming, “Material and mode dispersion in GeO2, B2O3, SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).
[CrossRef]

Gabriel , Jr., M. C.

Huang, A.

Kuzin, E. A.

V. I. Belotitskii, E. A. Kuzin, M. P. Petrov, and V. V. Spirin, “Demonstration of over 100 million round trips in recirculating fibre loop with all-optical regeneration,” Electron. Lett. 29, 49–50 (1993).
[CrossRef]

Petrov, M. P.

V. I. Belotitskii, E. A. Kuzin, M. P. Petrov, and V. V. Spirin, “Demonstration of over 100 million round trips in recirculating fibre loop with all-optical regeneration,” Electron. Lett. 29, 49–50 (1993).
[CrossRef]

Smith, R. G.

Spirin, V. V.

V. I. Belotitskii, E. A. Kuzin, M. P. Petrov, and V. V. Spirin, “Demonstration of over 100 million round trips in recirculating fibre loop with all-optical regeneration,” Electron. Lett. 29, 49–50 (1993).
[CrossRef]

Whitaker, N. A.

Appl. Opt. (1)

Electron. Lett. (1)

V. I. Belotitskii, E. A. Kuzin, M. P. Petrov, and V. V. Spirin, “Demonstration of over 100 million round trips in recirculating fibre loop with all-optical regeneration,” Electron. Lett. 29, 49–50 (1993).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. W. Fleming, “Material and mode dispersion in GeO2, B2O3, SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).
[CrossRef]

Opt. Lett. (1)

Other (8)

M. Vaziri, K. Ahn, B. C. Burnett, G. R. Williams, M. N. Islam, K. O. Hill, and B. Malo, “Ultrafast low latency soliton logic gate using low-birefringence polarization-maintaining fiber,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 264.

C. R. Doerr, W. S. Wong, H. A. Haus, and E. Ippen, “Additive-pulse mode locking/limiting storage ring,” in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper, pp. 27–28.

E. A. Kuzin, M. A. Maksutenko, M. P. Petrov, and V. V. Spirin, “All-optical fiber logic NOR gate using stimulated Raman scattering,” Opt. Comput. Process. 1, 163–167 (1991).

S. Akhmanov, V. Vysloukh, and A. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).

E. A. Kuzin, V. I. Belotitskii, M. P. Petrov, and V. V. Spirin, “Long term storage of a bit stream of pulses through stimulated Raman scattering,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 106–107.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).

V. V. Spirin, M. P. Petrov, E. A. Kuzin, and V. I. Belotitskii, “Investigation of the threshold of the fiber ring laser at the zero dispersion wavelength range,” Zh. Tekh. Fiz. 64, 151–157 (1994) (in Russian).

K. P. Jackson and H. J. Shaw, “Fiber-optic delay line signal processing,” in Optical Signal Processing, J. L. Horner, ed. (Academic, New York, 1987), pp. 431–476.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principal scheme of the SRS logic gate not.

Fig. 2
Fig. 2

Dependence of the output Stokes power normalized to the pump power (curve 1) and the differential coefficient of the amplification (curve 2) on the input Stokes power normalized to the pump power. The scale of the input Stokes power is multiplied by 104.

Fig. 3
Fig. 3

Dependence of the normalized output Stokes energy on the input one when the group-velocity mismatching and self-action effects are taken into account.

Fig. 4
Fig. 4

Stable power of the logic ones and the logic zeros in the fiber loop as a function of the increment of the amplification in the SRS generator.

Fig. 5
Fig. 5

Experimental setup of the recirculating fiber loop.

Fig. 6
Fig. 6

Oscilloscope trace of the envelope of the Stokes-pulse train at the output of the SRS amplifier: (a) the binary sequence of the pulses circulates in the loop without destruction; (b) the sequence of the pulses is destroyed.

Fig. 7
Fig. 7

Experimental dependence of the Stokes power corresponding to logic ones and logic zeros on the pump power introduced in the SRS generator. The Stokes power is normalized to the pump power introduced in the amplifier; the pump power in the generator is normalized to the threshold power in it.

Fig. 8
Fig. 8

Dependence of the required pump power on the sift of the delay. Pump power is normalized to the threshold power in the generator.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

iqSς=i12|qP|2qS+R(|qS|2+2|qP|2)qS-ivqSτ-12δ2qSτ2,
iqPς=i12|qS|2qP+R(|qP|2+2|qS|2)qP-12δ2qPτ2.
dISdz=gIPIS,
dIPdz=-gIPIS,
IS,out=(IS,inp+IP,inp)exp[g(IS,inp+IP,inp)z]IP,inp+IS,inp exp[g(IS,inp+IP,inp)z]IS,inp,
IP,out=IS,inp+IP,inpIP,inp+IS,inp exp[g(IS,inp+IP,inp)z]IP,inp,
K=(dIout/dIinp)(Iinp/Iout).
Δωkn2Iz/ti.
W=15SDΔλ/g.

Metrics