Abstract

We report the temperature dependence of a continuous-wave noncritically phase-matched (θ=90°) optical parametric amplifier based on a 15-mm-long silver gallium sulfide crystal (AgGaS2) pumped by a 50-mW near-IR AlGaAs diode laser (λ3=0.843 µm). This amplifier is idler seeded by a 15-mW KCl:Li (FA-II) color-center laser (λ1=2.53 µm) and produces microwatt-range power of a signal radiation at λ2=1.265 µm. Updated linear and thermo-optic data of this chalcopyrite material, such as its room-temperature refractive indices and their temperature dependence, are devised from this type I (eoo) 3:1 frequency-division process and from other published data on noncritically phase-matched difference-frequency generation. The resulting dno,e/dT values reproduce fairly well all of the reported results on temperature phase-matched parametric mixing.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
    [CrossRef]
  2. R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
    [CrossRef]
  3. T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals,” Appl. Phys. Lett. 44, 383 (1984).
    [CrossRef]
  4. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
    [CrossRef]
  5. K. Kato, “High power difference-frequency generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
    [CrossRef]
  6. A. G. Yodh, H. W. K. Tom, G. D. Aumillier, and R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991).
    [CrossRef]
  7. E. J. Canto-Said, M. P. McCann, P. G. Wigley, and G. J. Dixon, “Broadly tunable mid-infrared intracavity difference-frequency laser,” Opt. Lett. 20, 1268 (1995).
    [CrossRef] [PubMed]
  8. P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
    [CrossRef]
  9. U. Simon, S. Waltman, I. Loa, F. K. Tittel, and L. Hollberg, “External-cavity difference frequency source near 3.3 mm, based on combining a tunable diode laser with a diode-pumped Nd:YAG laser in AgGaS2,” J. Opt. Soc. Am. B 12, 323 (1995).
    [CrossRef]
  10. D. Touahri, O. Acef, and J.-J. Zondy, “30-THz upconversion of an AlGaAs diode laser with AgGaS2:bridging the several-terahertz frequency gap in the near infrared,” Opt. Lett. 21, 213 (1996).
    [CrossRef] [PubMed]
  11. D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
    [CrossRef]
  12. J.-J. Zondy, D. Touahri, and O. Acef, “Infra-red to visible non-linear up and down conversion processes using AgGaS2 crystals,” in Advanced Solid State Lasers, S. A. Payne and C. Pollock eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 164–167.
  13. G. C. Bhar, D. K. Ghosh, P. S. Ghosh, and D. Schmitt, “Temperature effects in AgGaS2 nonlinear devices,” Appl. Opt. 16, 2492 (1983).
    [CrossRef]
  14. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, A. E. Siegman, Ed. (Vol. 64 of Springer-Verlag, Series in Optical Science Springer-Verlag, Berlin, 1991), p. 82. Note the missing 10−5 factor on the dn/dT in this edition.
  15. P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52 (1992).
    [CrossRef]
  16. G. C. Bhar, S. Das, and P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228 (1994).
    [CrossRef]
  17. J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004 (1994).
    [CrossRef]
  18. D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
    [CrossRef]
  19. D. Touahri, “Développement d’une chaine de synthèse de fréquences de l’infra-rouge au visible. Application à la mesure de la transition à deux photons 5S1/2–5D5/2 du rubidium à 385 THz (778.1 nm),” Ph.D. dissertation (Université de Paris XI, Orsay, France, 1996).
  20. The sample used in this experiment was supplied by Cleveland Crystals, Ohio.
  21. G. T. Johnston, “Wavelength dependence of dn/dT in infra-red transmitting semiconductor material,” Appl. Opt. 16, 1796 (1977).
    [CrossRef] [PubMed]
  22. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, eds., Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1986), Chap. 10.
  23. G. C. Bhar, S. Das, D. K. Ghosh, and L. K. Samanta, “Phasematching of infrared nonlinear laser devices using AgGaS2,” IEEE J. Quantum Electron. 24, 1492 (1988).
    [CrossRef]
  24. C. A. Ebbers, “Thermally insensitive, single crystal, biaxial electro-optic modulators,” J. Opt. Soc. Am. B 12, 1012 (1995).
    [CrossRef]

1997

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

1996

1995

1994

1992

P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52 (1992).
[CrossRef]

1991

1988

G. C. Bhar, S. Das, D. K. Ghosh, and L. K. Samanta, “Phasematching of infrared nonlinear laser devices using AgGaS2,” IEEE J. Quantum Electron. 24, 1492 (1988).
[CrossRef]

1987

R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
[CrossRef]

1984

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals,” Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

K. Kato, “High power difference-frequency generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[CrossRef]

1983

G. C. Bhar, D. K. Ghosh, P. S. Ghosh, and D. Schmitt, “Temperature effects in AgGaS2 nonlinear devices,” Appl. Opt. 16, 2492 (1983).
[CrossRef]

1977

1971

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Abed, M.

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004 (1994).
[CrossRef]

Acef, O.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

D. Touahri, O. Acef, and J.-J. Zondy, “30-THz upconversion of an AlGaAs diode laser with AgGaS2:bridging the several-terahertz frequency gap in the near infrared,” Opt. Lett. 21, 213 (1996).
[CrossRef] [PubMed]

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

Aumillier, G. D.

Benko, Z.

P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52 (1992).
[CrossRef]

Bhar, G. C.

G. C. Bhar, S. Das, and P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228 (1994).
[CrossRef]

G. C. Bhar, S. Das, D. K. Ghosh, and L. K. Samanta, “Phasematching of infrared nonlinear laser devices using AgGaS2,” IEEE J. Quantum Electron. 24, 1492 (1988).
[CrossRef]

G. C. Bhar, D. K. Ghosh, P. S. Ghosh, and D. Schmitt, “Temperature effects in AgGaS2 nonlinear devices,” Appl. Opt. 16, 2492 (1983).
[CrossRef]

Biraben, F.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

Brandt, G.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals,” Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Byer, R. L.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Canarelli, P.

P. Canarelli, Z. Benko, R. Curl, and F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52 (1992).
[CrossRef]

Canto-Said, E. J.

Chemla, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Clairon, A.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004 (1994).
[CrossRef]

Curl, R.

Curl, R. F.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52 (1992).
[CrossRef]

Das, S.

G. C. Bhar, S. Das, and P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228 (1994).
[CrossRef]

G. C. Bhar, S. Das, D. K. Ghosh, and L. K. Samanta, “Phasematching of infrared nonlinear laser devices using AgGaS2,” IEEE J. Quantum Electron. 24, 1492 (1988).
[CrossRef]

Datta, P. K.

G. C. Bhar, S. Das, and P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228 (1994).
[CrossRef]

de Beauvoir, B.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

Dixon, G. J.

Ebbers, C. A.

Eckardt, R. C.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Elsaesser, T.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals,” Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Feigelson, R. S.

R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Felder, R.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

Ghosh, D. K.

G. C. Bhar, S. Das, D. K. Ghosh, and L. K. Samanta, “Phasematching of infrared nonlinear laser devices using AgGaS2,” IEEE J. Quantum Electron. 24, 1492 (1988).
[CrossRef]

G. C. Bhar, D. K. Ghosh, P. S. Ghosh, and D. Schmitt, “Temperature effects in AgGaS2 nonlinear devices,” Appl. Opt. 16, 2492 (1983).
[CrossRef]

Ghosh, P. S.

G. C. Bhar, D. K. Ghosh, P. S. Ghosh, and D. Schmitt, “Temperature effects in AgGaS2 nonlinear devices,” Appl. Opt. 16, 2492 (1983).
[CrossRef]

Hielscher, A. H.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52 (1992).
[CrossRef]

Hilico, L.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

Hollberg, L.

Johnston, G. T.

Julien, L.

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

Kaiser, W.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals,” Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Kato, K.

K. Kato, “High power difference-frequency generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[CrossRef]

Koidl, P.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals,” Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Kupecek, P. J.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Loa, I.

McCann, M. P.

Millerioux, Y.

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

Miranda, R. S.

Nez, F.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

Robertson, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Route, R. K.

R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Samanta, L. K.

G. C. Bhar, S. Das, D. K. Ghosh, and L. K. Samanta, “Phasematching of infrared nonlinear laser devices using AgGaS2,” IEEE J. Quantum Electron. 24, 1492 (1988).
[CrossRef]

Schmitt, D.

G. C. Bhar, D. K. Ghosh, P. S. Ghosh, and D. Schmitt, “Temperature effects in AgGaS2 nonlinear devices,” Appl. Opt. 16, 2492 (1983).
[CrossRef]

Seilmeier, A.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals,” Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Simon, U.

Smith, R. C.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Tittel, F. K.

Tom, H. W. K.

Touahri, D.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

D. Touahri, O. Acef, and J.-J. Zondy, “30-THz upconversion of an AlGaAs diode laser with AgGaS2:bridging the several-terahertz frequency gap in the near infrared,” Opt. Lett. 21, 213 (1996).
[CrossRef] [PubMed]

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

Waltman, S.

Wigley, P. G.

Yodh, A. G.

Zondy, J.-J.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

D. Touahri, O. Acef, and J.-J. Zondy, “30-THz upconversion of an AlGaAs diode laser with AgGaS2:bridging the several-terahertz frequency gap in the near infrared,” Opt. Lett. 21, 213 (1996).
[CrossRef] [PubMed]

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

J.-J. Zondy, M. Abed, and A. Clairon, “Type-II frequency doubling at λ=1.30 μm and λ=2.53 μm in flux grown potassium titanyl phosphate,” J. Opt. Soc. Am. B 11, 2004 (1994).
[CrossRef]

Appl. Opt.

G. C. Bhar, D. K. Ghosh, P. S. Ghosh, and D. Schmitt, “Temperature effects in AgGaS2 nonlinear devices,” Appl. Opt. 16, 2492 (1983).
[CrossRef]

G. T. Johnston, “Wavelength dependence of dn/dT in infra-red transmitting semiconductor material,” Appl. Opt. 16, 1796 (1977).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using AgGaS2 crystals,” Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

IEEE J. Quantum Electron.

K. Kato, “High power difference-frequency generation at 5–11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[CrossRef]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase-matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 52 (1992).
[CrossRef]

G. C. Bhar, S. Das, D. K. Ghosh, and L. K. Samanta, “Phasematching of infrared nonlinear laser devices using AgGaS2,” IEEE J. Quantum Electron. 24, 1492 (1988).
[CrossRef]

IEEE Trans Instrum. Meas.

D. Touahri, F. Nez, M. Abed, J.-J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, and R. Felder, “LPTF frequency synthesis chain: results and improvement for the near future,” IEEE Trans Instrum. Meas. 44, 170 (1995).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

G. C. Bhar, S. Das, and P. K. Datta, “Tangentially phase-matched infrared detection in AgGaS2,” J. Phys. D 27, 228 (1994).
[CrossRef]

Opt. Commun.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, and F. Nez, “Frequency measurement of the 5S1/2(F=3)–5D5/2(F=5) two-photon transition in rubidium,” Opt. Commun. 133, 471 (1997).
[CrossRef]

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Opt. Eng.

R. S. Feigelson and R. K. Route, “Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
[CrossRef]

Opt. Lett.

Other

J.-J. Zondy, D. Touahri, and O. Acef, “Infra-red to visible non-linear up and down conversion processes using AgGaS2 crystals,” in Advanced Solid State Lasers, S. A. Payne and C. Pollock eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 164–167.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, A. E. Siegman, Ed. (Vol. 64 of Springer-Verlag, Series in Optical Science Springer-Verlag, Berlin, 1991), p. 82. Note the missing 10−5 factor on the dn/dT in this edition.

D. Touahri, “Développement d’une chaine de synthèse de fréquences de l’infra-rouge au visible. Application à la mesure de la transition à deux photons 5S1/2–5D5/2 du rubidium à 385 THz (778.1 nm),” Ph.D. dissertation (Université de Paris XI, Orsay, France, 1996).

The sample used in this experiment was supplied by Cleveland Crystals, Ohio.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, eds., Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1986), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for type I m (eoo) NCPM amplification of λ2=1.26-µm radiation from the difference mixing of an AlGaAs diode laser and a KCl:Li CCL.

Fig. 2
Fig. 2

NCPM external angular acceptance of the 3ω-ω2ω OPA/DFG measured at T=25 °C, showing a wide angular width of Δθ=5° (full width at 4/π2 height) characteristic of NCPM. The solid curve is calculated with the refractive indices of Table 2 (Ref. 4 yields the same curve) and the plane-wave sinc2(Δklc/2) function.

Fig. 3
Fig. 3

NCPM temperature acceptance bandwidth at T=10 °C. The solid curve is calculated with the refitted thermo-optic data (Table 3). The dashed curve is calculated from Ref. 13.

Fig. 4
Fig. 4

Ordinary (O) and extraordinary (E) refractive indices of AgGaS2 plotted from the refined Sellmeier coefficients of Table 2 (solid curve) and from the data of Ref. 4 (dashed curve), together with the updated (solid curve) and the original (dashed curve, Ref. 13) dno/dT(λ) and dne/dT(λ).

Fig. 5
Fig. 5

NCPM temperature variation of DFG output wavelength of a dye-laser spectrometer computed from Tables 1 and 2 (solid curves). Experimental data of Canarelli et al.,15 represented by circles (T=20 °C), triangles (T=60 °C), and squares (T=100 °C), are shown. The dashed curves are the curves calculated from the thermo-optic data of Bhar et al.13

Fig. 6
Fig. 6

NCPM phase-matching temperatures of the 3ω-ω2ω OPA/DFG as a function of CCL wavelength. The experimental data points are listed in Table 1. The dashed line is the prediction from Refs. 4 and 13. The dotted-dashed line is a straight-line least-square fit of the experimental data; the solid line is calculated from the refitted linear and thermo-optic data of Tables 1 and 2.

Tables (3)

Tables Icon

Table 1 Experimentally Measured Pump and Idler Wavelengths for Type I NCPM 3ω-ω2ω in AgGaS2

Tables Icon

Table 2 Fan et al. and Our Refined Sellmeier Coefficients for Silver Thiogallate

Tables Icon

Table 3 Bhar et al. and Our Updated Thermo-Optic Coefficients for Silver Thiogallate

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ne(λ3, T)λ3-no(λ2, T)λ2-no(λ1, T)λ1=0,
ne,o(λi, T)=ne,o(λi, T0)+ne,oTλi(T-T0),
3ne(3λ, T)-2no(2λ, T)-no(λ, T)=0.
ΔT=F(λ1, λ2, λ3, T0)×λ3-1neTλ3-λ2-1noTλ2-λ1-1noTλ1-1.
2no,edno,edT=(Ao,eRo,e+Bo,eRo,e2)×10-5,
G=kwk[Fk(λ1k, λ2k, λ3k, Tk)]2,
ni2=Ai+Bi/(1-Ci/λ2)+Di/(1-Ei/λ2).

Metrics