Abstract

We have investigated the intensity squeezing bandwidth of sub-Poissonian light generated by a high-speed light-emitting diode. The squeezing bandwidth of a constant-current-driven light-emitting diode is proportional to a driving current in a lower-current regime and approaches a constant in a higher-current regime. This dependence on driving current is well explained by the contributions of the thermionic emission time and the radiative lifetime to the squeezing bandwidth.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
    [CrossRef] [PubMed]
  2. P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
    [CrossRef]
  3. G. Shinozaki, T. Hirano, T. Kuga, and M. Yamanishi, “Squeezing in photon number fluctuations from high-speed light emitting diodes,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, Washington, D.C., 1995), paper WG3.
  4. T. Hirano and T. Kuga, “Generation of weak sub-Poissonian light by a high-efficiency light-emitting diode,” IEEE J. Quantum Electron. 31, 2236–2240 (1995).
    [CrossRef]
  5. T. Hirano, G. Shinozaki, J. Abe, and T. Kuga, “Investigating statistical properties of light from high efficiency light emitting diodes,” Prog. Crystal Growth Char. Mater. 33, 339–342 (1996).
  6. H. Fujisaki and A. Shimizu, “Quantum noise in semiconductor light-emitting devices,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, Washington, D.C., 1995), postdeadline paper PD1.7.
  7. P. J. Edwards and G. H. Pollard, “Quantum noise-correlated operation of an electrically coupled semiconductor light emitter,” Phys. Rev. Lett. 69, 1757–1760 (1992).
    [CrossRef] [PubMed]
  8. E. Goobar, A. Karlsson, G. Björk, and P.-J. Rigole, “Quantum correlated light beams and sub-Poissonian electrical partition noise in parallel and series coupled semiconductor light emitters,” Phys. Rev. Lett. 70, 437–440 (1993).
    [CrossRef] [PubMed]
  9. E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
    [CrossRef] [PubMed]
  10. J.-F. Roch, J.-Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
    [CrossRef] [PubMed]
  11. A. Shimizu and M. Ueda, “Effects of dephasing and dissipation on quantum noise in a conductor,” Phys. Rev. Lett. 69, 1403–1406 (1992).
    [CrossRef] [PubMed]
  12. A. Imamog???lu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junction: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
    [CrossRef]
  13. J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
    [CrossRef]
  14. A. Imamog???lu, Y. Yamamoto, and P. Solomon, “Single-electron thermionic-emission oscillations in p-n microjunctions,” Phys. Rev. B 46, 9555–9563 (1992).
    [CrossRef]
  15. A. Imamog???lu and Y. Yamamoto, “Nonclassical light generation by Coulomb blockade of resonant tunneling,” Phys. Rev. B 46, 15, 982–15, 991 (1992).
    [CrossRef]
  16. T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Phys. Rev. Lett. 59, 109–112 (1987).
    [CrossRef] [PubMed]
  17. J. B. Barner and S. T. Ruggiero, “Observation of the incremental charging of Ag particles by single electrons,” Phys. Rev. Lett. 59, 807–810 (1987).
    [CrossRef] [PubMed]
  18. Hitachi Optodevice Data Book (1996).

1995 (2)

T. Hirano and T. Kuga, “Generation of weak sub-Poissonian light by a high-efficiency light-emitting diode,” IEEE J. Quantum Electron. 31, 2236–2240 (1995).
[CrossRef]

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[CrossRef]

1993 (4)

A. Imamog???lu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junction: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[CrossRef]

E. Goobar, A. Karlsson, G. Björk, and P.-J. Rigole, “Quantum correlated light beams and sub-Poissonian electrical partition noise in parallel and series coupled semiconductor light emitters,” Phys. Rev. Lett. 70, 437–440 (1993).
[CrossRef] [PubMed]

E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
[CrossRef] [PubMed]

J.-F. Roch, J.-Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
[CrossRef] [PubMed]

1992 (4)

A. Shimizu and M. Ueda, “Effects of dephasing and dissipation on quantum noise in a conductor,” Phys. Rev. Lett. 69, 1403–1406 (1992).
[CrossRef] [PubMed]

P. J. Edwards and G. H. Pollard, “Quantum noise-correlated operation of an electrically coupled semiconductor light emitter,” Phys. Rev. Lett. 69, 1757–1760 (1992).
[CrossRef] [PubMed]

A. Imamog???lu, Y. Yamamoto, and P. Solomon, “Single-electron thermionic-emission oscillations in p-n microjunctions,” Phys. Rev. B 46, 9555–9563 (1992).
[CrossRef]

A. Imamog???lu and Y. Yamamoto, “Nonclassical light generation by Coulomb blockade of resonant tunneling,” Phys. Rev. B 46, 15, 982–15, 991 (1992).
[CrossRef]

1991 (1)

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

1987 (3)

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[CrossRef]

T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Phys. Rev. Lett. 59, 109–112 (1987).
[CrossRef] [PubMed]

J. B. Barner and S. T. Ruggiero, “Observation of the incremental charging of Ag particles by single electrons,” Phys. Rev. Lett. 59, 807–810 (1987).
[CrossRef] [PubMed]

Barner, J. B.

J. B. Barner and S. T. Ruggiero, “Observation of the incremental charging of Ag particles by single electrons,” Phys. Rev. Lett. 59, 807–810 (1987).
[CrossRef] [PubMed]

Björk, G.

E. Goobar, A. Karlsson, G. Björk, and P.-J. Rigole, “Quantum correlated light beams and sub-Poissonian electrical partition noise in parallel and series coupled semiconductor light emitters,” Phys. Rev. Lett. 70, 437–440 (1993).
[CrossRef] [PubMed]

E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
[CrossRef] [PubMed]

Dolan, G. J.

T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Phys. Rev. Lett. 59, 109–112 (1987).
[CrossRef] [PubMed]

Edwards, P. J.

P. J. Edwards and G. H. Pollard, “Quantum noise-correlated operation of an electrically coupled semiconductor light emitter,” Phys. Rev. Lett. 69, 1757–1760 (1992).
[CrossRef] [PubMed]

Fulton, T. A.

T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Phys. Rev. Lett. 59, 109–112 (1987).
[CrossRef] [PubMed]

Goobar, E.

E. Goobar, A. Karlsson, G. Björk, and P.-J. Rigole, “Quantum correlated light beams and sub-Poissonian electrical partition noise in parallel and series coupled semiconductor light emitters,” Phys. Rev. Lett. 70, 437–440 (1993).
[CrossRef] [PubMed]

E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
[CrossRef] [PubMed]

Grangier, P.

J.-F. Roch, J.-Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
[CrossRef] [PubMed]

Hirano, T.

T. Hirano and T. Kuga, “Generation of weak sub-Poissonian light by a high-efficiency light-emitting diode,” IEEE J. Quantum Electron. 31, 2236–2240 (1995).
[CrossRef]

Imamog???lu, A.

A. Imamog???lu and Y. Yamamoto, “Nonclassical light generation by Coulomb blockade of resonant tunneling,” Phys. Rev. B 46, 15, 982–15, 991 (1992).
[CrossRef]

A. Imamog???lu, Y. Yamamoto, and P. Solomon, “Single-electron thermionic-emission oscillations in p-n microjunctions,” Phys. Rev. B 46, 9555–9563 (1992).
[CrossRef]

Imamog???u, A.

A. Imamog???lu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junction: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[CrossRef]

Kan, H.

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[CrossRef]

Karlsson, A.

E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
[CrossRef] [PubMed]

E. Goobar, A. Karlsson, G. Björk, and P.-J. Rigole, “Quantum correlated light beams and sub-Poissonian electrical partition noise in parallel and series coupled semiconductor light emitters,” Phys. Rev. Lett. 70, 437–440 (1993).
[CrossRef] [PubMed]

Kim, J.

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[CrossRef]

Kuga, T.

T. Hirano and T. Kuga, “Generation of weak sub-Poissonian light by a high-efficiency light-emitting diode,” IEEE J. Quantum Electron. 31, 2236–2240 (1995).
[CrossRef]

Machida, S.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

Poizat, J.-Ph.

J.-F. Roch, J.-Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
[CrossRef] [PubMed]

Pollard, G. H.

P. J. Edwards and G. H. Pollard, “Quantum noise-correlated operation of an electrically coupled semiconductor light emitter,” Phys. Rev. Lett. 69, 1757–1760 (1992).
[CrossRef] [PubMed]

Rarity, J. G.

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[CrossRef]

Richardson, W. H.

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

Rigole, P.-J.

E. Goobar, A. Karlsson, G. Björk, and P.-J. Rigole, “Quantum correlated light beams and sub-Poissonian electrical partition noise in parallel and series coupled semiconductor light emitters,” Phys. Rev. Lett. 70, 437–440 (1993).
[CrossRef] [PubMed]

Roch, J.-F.

J.-F. Roch, J.-Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
[CrossRef] [PubMed]

Ruggiero, S. T.

J. B. Barner and S. T. Ruggiero, “Observation of the incremental charging of Ag particles by single electrons,” Phys. Rev. Lett. 59, 807–810 (1987).
[CrossRef] [PubMed]

Satchell, J. S.

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[CrossRef]

Shimizu, A.

A. Shimizu and M. Ueda, “Effects of dephasing and dissipation on quantum noise in a conductor,” Phys. Rev. Lett. 69, 1403–1406 (1992).
[CrossRef] [PubMed]

Solomon, P.

A. Imamog???lu, Y. Yamamoto, and P. Solomon, “Single-electron thermionic-emission oscillations in p-n microjunctions,” Phys. Rev. B 46, 9555–9563 (1992).
[CrossRef]

Tapster, P. R.

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[CrossRef]

Ueda, M.

A. Shimizu and M. Ueda, “Effects of dephasing and dissipation on quantum noise in a conductor,” Phys. Rev. Lett. 69, 1403–1406 (1992).
[CrossRef] [PubMed]

Yamamoto, Y.

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[CrossRef]

A. Imamog???lu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junction: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[CrossRef]

A. Imamog???lu, Y. Yamamoto, and P. Solomon, “Single-electron thermionic-emission oscillations in p-n microjunctions,” Phys. Rev. B 46, 9555–9563 (1992).
[CrossRef]

A. Imamog???lu and Y. Yamamoto, “Nonclassical light generation by Coulomb blockade of resonant tunneling,” Phys. Rev. B 46, 15, 982–15, 991 (1992).
[CrossRef]

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

Europhys. Lett. (1)

P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Hirano and T. Kuga, “Generation of weak sub-Poissonian light by a high-efficiency light-emitting diode,” IEEE J. Quantum Electron. 31, 2236–2240 (1995).
[CrossRef]

Phys. Rev. B (3)

J. Kim, H. Kan, and Y. Yamamoto, “Macroscopic Coulomb-blockade effect in a constant-current-driven light-emitting diode,” Phys. Rev. B 52, 2008–2012 (1995).
[CrossRef]

A. Imamog???lu, Y. Yamamoto, and P. Solomon, “Single-electron thermionic-emission oscillations in p-n microjunctions,” Phys. Rev. B 46, 9555–9563 (1992).
[CrossRef]

A. Imamog???lu and Y. Yamamoto, “Nonclassical light generation by Coulomb blockade of resonant tunneling,” Phys. Rev. B 46, 15, 982–15, 991 (1992).
[CrossRef]

Phys. Rev. Lett. (9)

T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Phys. Rev. Lett. 59, 109–112 (1987).
[CrossRef] [PubMed]

J. B. Barner and S. T. Ruggiero, “Observation of the incremental charging of Ag particles by single electrons,” Phys. Rev. Lett. 59, 807–810 (1987).
[CrossRef] [PubMed]

W. H. Richardson, S. Machida, and Y. Yamamoto, “Squeezed photon-number noise and sub-Poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
[CrossRef] [PubMed]

P. J. Edwards and G. H. Pollard, “Quantum noise-correlated operation of an electrically coupled semiconductor light emitter,” Phys. Rev. Lett. 69, 1757–1760 (1992).
[CrossRef] [PubMed]

E. Goobar, A. Karlsson, G. Björk, and P.-J. Rigole, “Quantum correlated light beams and sub-Poissonian electrical partition noise in parallel and series coupled semiconductor light emitters,” Phys. Rev. Lett. 70, 437–440 (1993).
[CrossRef] [PubMed]

E. Goobar, A. Karlsson, and G. Björk, “Experimental realization of a semiconductor photon number amplifier and a quantum optical tap,” Phys. Rev. Lett. 71, 2002–2005 (1993).
[CrossRef] [PubMed]

J.-F. Roch, J.-Ph. Poizat, and P. Grangier, “Sub-shot-noise manipulation of light using semiconductor emitters and receivers,” Phys. Rev. Lett. 71, 2006–2009 (1993).
[CrossRef] [PubMed]

A. Shimizu and M. Ueda, “Effects of dephasing and dissipation on quantum noise in a conductor,” Phys. Rev. Lett. 69, 1403–1406 (1992).
[CrossRef] [PubMed]

A. Imamog???lu and Y. Yamamoto, “Noise suppression in semiconductor p-i-n junction: transition from macroscopic squeezing to mesoscopic Coulomb blockade of electron emission processes,” Phys. Rev. Lett. 70, 3327–3330 (1993).
[CrossRef]

Other (4)

T. Hirano, G. Shinozaki, J. Abe, and T. Kuga, “Investigating statistical properties of light from high efficiency light emitting diodes,” Prog. Crystal Growth Char. Mater. 33, 339–342 (1996).

H. Fujisaki and A. Shimizu, “Quantum noise in semiconductor light-emitting devices,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, Washington, D.C., 1995), postdeadline paper PD1.7.

G. Shinozaki, T. Hirano, T. Kuga, and M. Yamanishi, “Squeezing in photon number fluctuations from high-speed light emitting diodes,” in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, Washington, D.C., 1995), paper WG3.

Hitachi Optodevice Data Book (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. Sub-Poissonian and Poissonian noise power was measured by switching from the resistor RS to photodiode PD1.

Fig. 2
Fig. 2

Noise spectra observed directly with the spectrum analyzer at room temperature. The photocurrent was 500 µA. The noise reduction in the sub-Poissonian mode decreases in the high-frequency regime.

Fig. 3
Fig. 3

Normalized noise levels at room temperature for various current levels. We can see the driving-current dependence of the squeezing bandwidth in the lower-current regime. IPD is the photocurrent.

Fig. 4
Fig. 4

Squeezing bandwidth for various driving currents. Dashed line, the squeezing bandwidth determined by the radiative-lifetime limitation. Solid curve, the overall squeezing bandwidth calculated by Eq. (4) for τrad=10 ns and Cdep =42 nF.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τte=kBTCdepeI=NeI,
κ(t)=κ(0)expekBTVj(t)-Vb-e2Cdep=κ(0)exptτte-rn(t),
fte=12πτte=eI2πkBTCdep.
f=12π(τte+τrad)=12πkBTCdepeI+τrad,

Metrics