Abstract

We verify both experimentally and theoretically the cascadability and the Boolean complete functionality of the low-birefringent nonlinear optical loop mirror (low-bi NOLM) operating with all inputs at the same wavelength. We achieve a low switching energy by using a low-birefringent (Δn3.5×10-6), polarization-maintaining fiber to achieve a longer interaction length between two orthogonally polarized pulses. We experimentally demonstrate switching in the cascaded operation of two low-bi NOLM's using picosecond pulses from an erbium-doped fiber laser. This has the potential to have a bit rate of 100 Gb/s. After the two cascaded low-bi NOLM's, the performance is a peak switching contrast of 36:1 and a timing window of 1.7 pulse widths with a switching energy of 9 pJ. In addition, we demonstrate the and and the xor/not operations with the low-bi NOLM showing Boolean completeness. The and operation has a switching contrast of 84.5:1, and the xor/not has a switching contrast of 11.5:1. Finally, we study the gate numerically and find good agreement between experiments and simulations.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Williams, M. Vaziri, K. H. Ahn, B. C. Barnett, and M. N. Islam, “Soliton logic gate using low-birefringence fiber in a nonlinear loop mirror,” Opt. Lett. 20, 1671–1673 (1995).
    [CrossRef] [PubMed]
  2. K. Mori, T. Morioka, and M. Saruwatari, “All-optical multistage demultiplexers operated by logical permutations of control pulses,” IEEE Photonics Technol. Lett. 3, 1130–1133 (1991).
    [CrossRef]
  3. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
    [CrossRef] [PubMed]
  4. K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer,” Opt. Lett. 14, 754–756 (1989).
    [CrossRef] [PubMed]
  5. K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26, 962–964 (1990).
    [CrossRef]
  6. K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
    [CrossRef] [PubMed]
  7. S. V. Chernikov and J. R. Taylor, “Multigigabit/s pulse source based on the switching of an optical beat signal in a nonlinear fibre loop mirror,” Electron. Lett. 29, 658–660 (1993).
    [CrossRef]
  8. B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
    [CrossRef]
  9. N. A. Whitaker, H. Avramopoulos, P. M. W. French, M. C. Gabriel, and R. E. LaMarche, “All-optical arbitrary demultiplexing at 2.5 Gbit/s with tolerance to timing jitter,” Opt. Lett. 16, 1838–1840 (1991).
    [CrossRef] [PubMed]
  10. X. D. Cao, B. C. Barnett, K. H. Ahn, Y. Liang, G. R. Williams, M. Vaziri, and M. N. Islam, “Experimental cascaded operation of low-birefringent nonlinear-optical loop mirrors,” Opt. Lett. 21, 1211–1213 (1996).
    [CrossRef] [PubMed]
  11. K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarisation-independent all-optical switching using a polarisation diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866 (1992).
    [CrossRef]
  12. K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6, 1130–1132 (1994).
    [CrossRef]
  13. I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
    [CrossRef]
  14. K. Suzuki, K. Iwatsuki, S. Nishi, and M. Saruwatari, “Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier,” Electron. Lett. 30, 1501–1503 (1994).
    [CrossRef]
  15. A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. Spirit, “Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol. 5, 761–770 (1995).
    [CrossRef]
  16. M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
    [CrossRef]
  17. M. Jinno and T. Matsumoto, “Nonlinear Saginaw interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992).
    [CrossRef]
  18. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
    [CrossRef] [PubMed]
  19. E. A. De Souza, M. N. Islam, C. E. Soccolich, W. Pleibel, R. H. Stolen, and J. Simpson, “Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser,” Electron. Lett. 29, 447–449 (1993).
    [CrossRef]
  20. I. Wegener, The Complexity of Boolean Functions (Teubner, Stuttgart, 1987), p. 9.
  21. M. N. Islam, Ultrafast Fiber Switching Devices and Systems (Cambridge U. Press, Cambridge, UK, 1992), pp. 146–152.
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995), pp. 50–54, 69–70.
  23. J. D. Moores, K. Bergman, H. A. Haus, and E. P. Ippen, “Demonstration of optical switching by means of solitary wave collisions in a fiber ring reflector,” Opt. Lett. 16, 138–140 (1991).
    [CrossRef] [PubMed]

1996 (1)

1995 (3)

G. R. Williams, M. Vaziri, K. H. Ahn, B. C. Barnett, and M. N. Islam, “Soliton logic gate using low-birefringence fiber in a nonlinear loop mirror,” Opt. Lett. 20, 1671–1673 (1995).
[CrossRef] [PubMed]

A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. Spirit, “Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol. 5, 761–770 (1995).
[CrossRef]

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
[CrossRef]

1994 (3)

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6, 1130–1132 (1994).
[CrossRef]

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
[CrossRef]

K. Suzuki, K. Iwatsuki, S. Nishi, and M. Saruwatari, “Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier,” Electron. Lett. 30, 1501–1503 (1994).
[CrossRef]

1993 (2)

S. V. Chernikov and J. R. Taylor, “Multigigabit/s pulse source based on the switching of an optical beat signal in a nonlinear fibre loop mirror,” Electron. Lett. 29, 658–660 (1993).
[CrossRef]

E. A. De Souza, M. N. Islam, C. E. Soccolich, W. Pleibel, R. H. Stolen, and J. Simpson, “Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser,” Electron. Lett. 29, 447–449 (1993).
[CrossRef]

1992 (2)

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarisation-independent all-optical switching using a polarisation diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866 (1992).
[CrossRef]

M. Jinno and T. Matsumoto, “Nonlinear Saginaw interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992).
[CrossRef]

1991 (4)

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, “All-optical multistage demultiplexers operated by logical permutations of control pulses,” IEEE Photonics Technol. Lett. 3, 1130–1133 (1991).
[CrossRef]

J. D. Moores, K. Bergman, H. A. Haus, and E. P. Ippen, “Demonstration of optical switching by means of solitary wave collisions in a fiber ring reflector,” Opt. Lett. 16, 138–140 (1991).
[CrossRef] [PubMed]

N. A. Whitaker, H. Avramopoulos, P. M. W. French, M. C. Gabriel, and R. E. LaMarche, “All-optical arbitrary demultiplexing at 2.5 Gbit/s with tolerance to timing jitter,” Opt. Lett. 16, 1838–1840 (1991).
[CrossRef] [PubMed]

1990 (2)

K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
[CrossRef] [PubMed]

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26, 962–964 (1990).
[CrossRef]

1989 (1)

1988 (1)

1980 (1)

Ahn, K. H.

Avramopoulos, H.

Barnett, B. C.

Bergman, K.

Blow, K. J.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
[CrossRef]

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26, 962–964 (1990).
[CrossRef]

K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer,” Opt. Lett. 14, 754–756 (1989).
[CrossRef] [PubMed]

Cao, X. D.

Chernikov, S. V.

S. V. Chernikov and J. R. Taylor, “Multigigabit/s pulse source based on the switching of an optical beat signal in a nonlinear fibre loop mirror,” Electron. Lett. 29, 658–660 (1993).
[CrossRef]

Constantine, P. D.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
[CrossRef]

Davies, D. A. O.

A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. Spirit, “Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol. 5, 761–770 (1995).
[CrossRef]

De Souza, E. A.

E. A. De Souza, M. N. Islam, C. E. Soccolich, W. Pleibel, R. H. Stolen, and J. Simpson, “Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser,” Electron. Lett. 29, 447–449 (1993).
[CrossRef]

Doran, N. J.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
[CrossRef]

K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
[CrossRef] [PubMed]

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26, 962–964 (1990).
[CrossRef]

K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer,” Opt. Lett. 14, 754–756 (1989).
[CrossRef] [PubMed]

N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
[CrossRef] [PubMed]

Eickhoff, W.

Eiselt, M.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
[CrossRef]

Ellis, A. D.

A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. Spirit, “Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol. 5, 761–770 (1995).
[CrossRef]

Flannery, D.

A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. Spirit, “Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol. 5, 761–770 (1995).
[CrossRef]

French, P. M. W.

Gabriel, M. C.

Glesk, I.

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
[CrossRef]

Hall, K. L.

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6, 1130–1132 (1994).
[CrossRef]

Haus, H. A.

Ippen, E. P.

Islam, M. N.

Iwatsuki, K.

K. Suzuki, K. Iwatsuki, S. Nishi, and M. Saruwatari, “Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier,” Electron. Lett. 30, 1501–1503 (1994).
[CrossRef]

Jinno, M.

M. Jinno and T. Matsumoto, “Nonlinear Saginaw interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992).
[CrossRef]

Kawanishi, S.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarisation-independent all-optical switching using a polarisation diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866 (1992).
[CrossRef]

LaMarche, R. E.

Liang, Y.

Livas, J. C.

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6, 1130–1132 (1994).
[CrossRef]

Lucek, J. K.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
[CrossRef]

Manning, R. J.

A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. Spirit, “Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol. 5, 761–770 (1995).
[CrossRef]

Marshall, I. W.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
[CrossRef]

Matsumoto, T.

M. Jinno and T. Matsumoto, “Nonlinear Saginaw interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992).
[CrossRef]

Moores, J. D.

Mori, K.

K. Mori, T. Morioka, and M. Saruwatari, “All-optical multistage demultiplexers operated by logical permutations of control pulses,” IEEE Photonics Technol. Lett. 3, 1130–1133 (1991).
[CrossRef]

Morioka, T.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarisation-independent all-optical switching using a polarisation diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866 (1992).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, “All-optical multistage demultiplexers operated by logical permutations of control pulses,” IEEE Photonics Technol. Lett. 3, 1130–1133 (1991).
[CrossRef]

Nayar, B. K.

Nelson, B. P.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
[CrossRef]

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26, 962–964 (1990).
[CrossRef]

Nishi, S.

K. Suzuki, K. Iwatsuki, S. Nishi, and M. Saruwatari, “Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier,” Electron. Lett. 30, 1501–1503 (1994).
[CrossRef]

Patrick, D. M.

A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. Spirit, “Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol. 5, 761–770 (1995).
[CrossRef]

Pieper, W.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
[CrossRef]

Pleibel, W.

E. A. De Souza, M. N. Islam, C. E. Soccolich, W. Pleibel, R. H. Stolen, and J. Simpson, “Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser,” Electron. Lett. 29, 447–449 (1993).
[CrossRef]

Prucnal, P. R.

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
[CrossRef]

Rashleigh, S. C.

Rauschenbach, K. A.

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6, 1130–1132 (1994).
[CrossRef]

Raybon, G.

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6, 1130–1132 (1994).
[CrossRef]

Saruwatari, M.

K. Suzuki, K. Iwatsuki, S. Nishi, and M. Saruwatari, “Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier,” Electron. Lett. 30, 1501–1503 (1994).
[CrossRef]

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarisation-independent all-optical switching using a polarisation diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866 (1992).
[CrossRef]

K. Mori, T. Morioka, and M. Saruwatari, “All-optical multistage demultiplexers operated by logical permutations of control pulses,” IEEE Photonics Technol. Lett. 3, 1130–1133 (1991).
[CrossRef]

Simpson, J.

E. A. De Souza, M. N. Islam, C. E. Soccolich, W. Pleibel, R. H. Stolen, and J. Simpson, “Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser,” Electron. Lett. 29, 447–449 (1993).
[CrossRef]

Smith, K.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
[CrossRef]

K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
[CrossRef] [PubMed]

Soccolich, C. E.

E. A. De Souza, M. N. Islam, C. E. Soccolich, W. Pleibel, R. H. Stolen, and J. Simpson, “Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser,” Electron. Lett. 29, 447–449 (1993).
[CrossRef]

Sokoloff, J. P.

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
[CrossRef]

Spirit, D. M.

A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. Spirit, “Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol. 5, 761–770 (1995).
[CrossRef]

Stolen, R. H.

E. A. De Souza, M. N. Islam, C. E. Soccolich, W. Pleibel, R. H. Stolen, and J. Simpson, “Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser,” Electron. Lett. 29, 447–449 (1993).
[CrossRef]

Suzuki, K.

K. Suzuki, K. Iwatsuki, S. Nishi, and M. Saruwatari, “Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier,” Electron. Lett. 30, 1501–1503 (1994).
[CrossRef]

Takara, H.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarisation-independent all-optical switching using a polarisation diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866 (1992).
[CrossRef]

Taylor, J. R.

S. V. Chernikov and J. R. Taylor, “Multigigabit/s pulse source based on the switching of an optical beat signal in a nonlinear fibre loop mirror,” Electron. Lett. 29, 658–660 (1993).
[CrossRef]

Uchiyama, K.

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarisation-independent all-optical switching using a polarisation diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866 (1992).
[CrossRef]

Ulrich, R.

Vaziri, M.

Weber, H. G.

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
[CrossRef]

Whitaker, N. A.

Wigley, P. G. J.

Williams, G. R.

Wood, D.

Electron. Lett. (7)

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26, 962–964 (1990).
[CrossRef]

S. V. Chernikov and J. R. Taylor, “Multigigabit/s pulse source based on the switching of an optical beat signal in a nonlinear fibre loop mirror,” Electron. Lett. 29, 658–660 (1993).
[CrossRef]

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 25, 704–705 (1991).
[CrossRef]

K. Uchiyama, H. Takara, S. Kawanishi, T. Morioka, and M. Saruwatari, “Ultrafast polarisation-independent all-optical switching using a polarisation diversity scheme in the nonlinear optical loop mirror,” Electron. Lett. 28, 1864–1866 (1992).
[CrossRef]

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Demonstration of all-optical demultiplexing of TDM data at 250 Gbit/s,” Electron. Lett. 30, 339–341 (1994).
[CrossRef]

K. Suzuki, K. Iwatsuki, S. Nishi, and M. Saruwatari, “Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier,” Electron. Lett. 30, 1501–1503 (1994).
[CrossRef]

E. A. De Souza, M. N. Islam, C. E. Soccolich, W. Pleibel, R. H. Stolen, and J. Simpson, “Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser,” Electron. Lett. 29, 447–449 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Jinno and T. Matsumoto, “Nonlinear Saginaw interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

K. Mori, T. Morioka, and M. Saruwatari, “All-optical multistage demultiplexers operated by logical permutations of control pulses,” IEEE Photonics Technol. Lett. 3, 1130–1133 (1991).
[CrossRef]

K. A. Rauschenbach, K. L. Hall, J. C. Livas, and G. Raybon, “All-optical pulse width and wavelength conversion at 10 Gb/s using a nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 6, 1130–1132 (1994).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies, and D. M. Spirit, “Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol. 5, 761–770 (1995).
[CrossRef]

M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13, 2099–2112 (1995).
[CrossRef]

Opt. Lett. (8)

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
[CrossRef] [PubMed]

N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
[CrossRef] [PubMed]

K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer,” Opt. Lett. 14, 754–756 (1989).
[CrossRef] [PubMed]

K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
[CrossRef] [PubMed]

J. D. Moores, K. Bergman, H. A. Haus, and E. P. Ippen, “Demonstration of optical switching by means of solitary wave collisions in a fiber ring reflector,” Opt. Lett. 16, 138–140 (1991).
[CrossRef] [PubMed]

N. A. Whitaker, H. Avramopoulos, P. M. W. French, M. C. Gabriel, and R. E. LaMarche, “All-optical arbitrary demultiplexing at 2.5 Gbit/s with tolerance to timing jitter,” Opt. Lett. 16, 1838–1840 (1991).
[CrossRef] [PubMed]

G. R. Williams, M. Vaziri, K. H. Ahn, B. C. Barnett, and M. N. Islam, “Soliton logic gate using low-birefringence fiber in a nonlinear loop mirror,” Opt. Lett. 20, 1671–1673 (1995).
[CrossRef] [PubMed]

X. D. Cao, B. C. Barnett, K. H. Ahn, Y. Liang, G. R. Williams, M. Vaziri, and M. N. Islam, “Experimental cascaded operation of low-birefringent nonlinear-optical loop mirrors,” Opt. Lett. 21, 1211–1213 (1996).
[CrossRef] [PubMed]

Other (3)

I. Wegener, The Complexity of Boolean Functions (Teubner, Stuttgart, 1987), p. 9.

M. N. Islam, Ultrafast Fiber Switching Devices and Systems (Cambridge U. Press, Cambridge, UK, 1992), pp. 146–152.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995), pp. 50–54, 69–70.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the low-bi NOLM. The signal and the control pulses are orthogonally polarized, and the fibers in the loop are low-birefringent, PM fibers. The control pulse enters the loop through one port of the 50/50 coupler and splits into two counterpropagating pulses. After traveling through the loop, these pulses recombine back at the 50/50 coupler, and if there is transmission, there is output at the other port. Signal A enters through the left PBS and exits through the right PBS. Signal B enters through the right PBS and exits through the left PBS. The fibers in the loop are wrapped on mandrels, and there is a polarization controller (PC) in the middle of the loop for flipping of the axes, if desired.

Fig. 2
Fig. 2

Experimental configuration for operation of a single low-bi NOLM. The output pulses from the EDFL are amplified through an EDFA and are split by the first bulk PBS. One portion of the output is the control-pulse stream, which first goes through an AOM modulator to remove any interference between the control and the signal pulses, then enters the loop through the 50/50 coupler. The other portion is again split by a second bulk PBS into signal-A and signal-B pulse streams. Both signal pulses pass through a delay stage to be able to vary the separation between the signal and the control pulses. The low-bi NOLM consists of two mandrels, each having 100 m of fiber.

Fig. 3
Fig. 3

Experimental configuration for cascaded operation of two low-bi NOLM's. The output pulses from the EDFL are amplified through an EDFA and are split by the first bulk PBS. One portion of the output is the control-pulse stream for the second low-bi NOLM. The other portion is split by a second bulk PBS as control and signal pulses for the first low-bi NOLM. The first low-bi NOLM has 200 m of fiber wrapped on two mandrels. The output from the first low-bi NOLM is amplified through another EDFA and is sent into the second low-bi NOLM as the signal. Again, the signal pulses for both low-bi NOLM's have delay stages in their paths for variation of the separation between the signal and the control pulses. The second low-bi NOLM has 150 m of fiber wrapped on four mandrels.

Fig. 4
Fig. 4

Experimental timing window for the single low-bi NOLM functioning as an and gate. The contrast ratio is the amount of the transmitted control-pulse energy in the presence of the signal pulse over the amount in the absence of the signal pulse. In this case there is no signal B, only signal A. The horizontal axis is the separation between the signal and the control pulses given in picoseconds. The peak contrast is 84.5:1, and the timing window is 1.7 pulse widths wide.

Fig. 5
Fig. 5

Experimental timing window for the not function with the single low-bi NOLM. The contrast ratio is the amount of the transmitted control-pulse energy in the presence of one signal pulse over the amount in the presence of two signal pulses. Curve 1 is obtained by fixing signal B while scanning signal A and curve 2 by fixing signal A while scanning signal B. The horizontal axis is the separation of the control and the scanned signal pulses given in picoseconds. For curve 1 the peak contrast is 10:1 with a timing window of 1.5 pulse widths. Curve 2 has a peak contrast of 11.5:1 with a timing window of 1.5 pulse widths.

Fig. 6
Fig. 6

Experimental output of not gate when the input signal is chopped. This shows switching when the signal is blocked, demonstrating an inverter. The contrast ratio is the amount of transmitted energy over the leakage when the signal is present. The contrast ratio is 11.5:1. The chopping speed is slow (hundreds of kilohertz).

Fig. 7
Fig. 7

Experimental autocorrelation for input and output pulses from a single low-bi NOLM. The solid curve is the pulse from the EDFL after amplification through the EDFA. The dashed curve is the output pulse from the low-bi NOLM after amplification. There is nearly no pulse distortion.

Fig. 8
Fig. 8

Experimental timing window of the second low-bi NOLM in cascaded operation. The contrast ratio is the amount of the transmitted control-pulse energy in the presence of the signal pulse over the amount in the absence of the signal pulse. There is only one signal pulse for each gate. The horizontal axis is the separation between the signal and the control pulses given in picoseconds. The peak contrast is 36:1, and the timing window is 1.7 pulse widths wide.

Fig. 9
Fig. 9

Nonlinear transmission versus switching energy for the first gate (simulation). Nonlinear transmission is the amount of control-pulse energy transmitted relative to the input control-pulse energy, normalizing for the loss. The horizontal axis is the amount of energy in the signal pulse, given in picojoules. The peak is 75%, after which the nonlinear transmission decreases as the signal energy is increased.

Fig. 10
Fig. 10

Simulation data for the timing window of the single low-bi NOLM functioning as an and gate. Nonlinear transmission is the amount of control-pulse energy transmitted relative to the input control-pulse energy, normalizing for the loss. In this case there is no signal B, only signal A. The horizontal axis is the separation between the signal and the control pulses given in picoseconds. The peak transmission is 62%, and the timing window is 1.7 pulse widths wide. Note that this figure is given in terms of nonlinear transmission since for the simulations the contrast ratio is very large (i.e., no signal leakage).

Fig. 11
Fig. 11

Simulation data for the timing window for the not function with the single low-bi NOLM. The contrast ratio is the amount of the transmitted control-pulse energy in the presence of one signal pulse over the amount in the presence of two signal pulses. In this case the bottom number of the contrast ratio does not go to zero, resulting in a finite contrast ratio even for the simulations. This curve corresponds to curve 2 of Fig. 5. The horizontal axis is the separation of the control and the scanned signal pulses given in picoseconds. The peak switching contrast is 25:1 with a timing window of 1.4 pulse widths.

Fig. 12
Fig. 12

Simulation data for the timing window of the second low-bi NOLM in cascaded operation. Nonlinear transmission is the amount of control-pulse energy transmitted relative to the input control-pulse energy, normalizing for the loss. In this case we took the output pulse corresponding to Fig. 9 and sent this output as the signal pulse for the second gate. The horizontal axis is the separation between the signal and the control pulses given in picoseconds. The peak transmission is 42.5%, and the timing window is 1.5 pulse widths wide. Again, note that this figure is given in terms of nonlinear transmission since for the simulations the contrast ratio is very large (i.e., no signal leakage).

Fig. 13
Fig. 13

Proposed header-processing unit. This unit consists of two cascaded logic gates. The first gate will determine whether the incoming packet is empty or not. If the packet is not empty, the second gate determines whether the packet is for the particular node in which this unit is located. In this unit the thresholder is set to look for a minimum value (i.e., the thresholder will trigger if the incoming energy is less than some set value).

Tables (1)

Tables Icon

Table 1 Calculated Normalized Parameters for the Different Gates and for the Different Functionalitiesa

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

lwo=cτΔn,
ΔnbendingαrR2,
u(t)=u0 sechtτexp-iCpt22τ2,
Z0=0.322π2cτ2λ2|D|,
δ=πΔnτ1.763λ2|D|,
u=(Pu/Pc)1/2,
v=(Pv/Pc)1/2,
Pc=λAeff2πn2Zc,
Zc=2Z0π.

Metrics