Abstract

We have investigated the performance of blue upconversion fiber lasers based on thulium-doped ZBLAN fiber, operating at 480 nm with a 1140-nm pump. Extensive fluorescence measurements have provided the necessary spectroscopic data to present a computer model that describes the performance of such lasers with good accuracy despite the complicated three-step upconversion mechanism and the influence of ion–ion energy transfer processes. We have identified the mechanisms that populate the levels above the  1G4 level and are able to specify the corresponding spectroscopic parameters. We discuss the relevance of these processes to the 480-nm laser performance. Furthermore, we have calculated optimized parameters for such lasers.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Grubb, K. W. Bennett, R. S. Cannon, and W. F. Humer, “CW room-temperature blue upconversion fibre laser,” Electron. Lett. 28, 1243–1244 (1992).
    [CrossRef]
  2. P. R. Barber, C. J. Mackechnie, R. D. T. Lauder, H. M. Pask, A. C. Tropper, D. C. Hanna, S. D. Butterworth, M. J. McCarthy, J.-L. Archambault, and L. Reekie, “All solid state blue room temperature thulium-doped upconversion fiber laser,” in Compact Blue-Green Lasers, Vol. 1 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CFA3.
  3. P. R. Barber, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Improved blue laser results and photochromic effects in Tm:ZBLAN fibre,” presented at the Twelfth UK National Quantum Electronics Conference, Southampton, UK, 1995.
  4. I. J. Booth, C. J. Mackechnie, and B. F. Ventrudo, “Operation of diode laser pumped Tm3+ ZBLAN upconversion fiber laser at 482 nm,” IEEE J. Quantum Electron. 32, 118–123 (1996).
    [CrossRef]
  5. S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, “Laser diode pumped 106 mW blue upconversion fiber laser,” Appl. Phys. Lett. 67, 1815–1817 (1995).
    [CrossRef]
  6. P. R. Barber, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Infrared-induced photodarkening in Tm-doped fluoride fibers,” Opt. Lett. 20, 2195–2197 (1995).
    [CrossRef] [PubMed]
  7. P. Laperle, A. Chandonnet, and R. Vallée, “Photoinduced absorption in thulium-doped ZBLAN fibres,” Opt. Lett. 20, 2484–2486 (1995).
    [CrossRef]
  8. I. J. Booth, J.-L. Archambault, and B. F. Ventrudo, “Photodegradation of near-infrared-pumped Tm3+-doped ZBLAN fiber upconversion lasers,” Opt. Lett. 21, 348–350 (1996).
    [CrossRef] [PubMed]
  9. F. Duclos and P. Urquhart, “Thulium-doped ZBLAN blue upconversion laser: theory,” J. Opt. Soc. Am. B 12, 709–717 (1995).
    [CrossRef]
  10. N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
    [CrossRef]
  11. E. W. L. Oomen, “Up-conversion of red light into blue light in thulium doped fluorozirconate glasses,” J. Lumin. 50, 317–331 (1992).
    [CrossRef]
  12. L. Wetenkamp, “Charakterisierung von laseraktiven dotierten Schwermetallfluorid-Gläsern und Faserlasern,” Ph.D. dissertation (Technische Universität Carolo-Wilhelmina, Braunschweig, Germany, 1991).
  13. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954–957 (1964).
    [CrossRef]

1996 (2)

I. J. Booth, C. J. Mackechnie, and B. F. Ventrudo, “Operation of diode laser pumped Tm3+ ZBLAN upconversion fiber laser at 482 nm,” IEEE J. Quantum Electron. 32, 118–123 (1996).
[CrossRef]

I. J. Booth, J.-L. Archambault, and B. F. Ventrudo, “Photodegradation of near-infrared-pumped Tm3+-doped ZBLAN fiber upconversion lasers,” Opt. Lett. 21, 348–350 (1996).
[CrossRef] [PubMed]

1995 (4)

1992 (2)

E. W. L. Oomen, “Up-conversion of red light into blue light in thulium doped fluorozirconate glasses,” J. Lumin. 50, 317–331 (1992).
[CrossRef]

S. G. Grubb, K. W. Bennett, R. S. Cannon, and W. F. Humer, “CW room-temperature blue upconversion fibre laser,” Electron. Lett. 28, 1243–1244 (1992).
[CrossRef]

1977 (1)

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
[CrossRef]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954–957 (1964).
[CrossRef]

Archambault, J.-L.

Barber, P. R.

Bennett, K. W.

S. G. Grubb, K. W. Bennett, R. S. Cannon, and W. F. Humer, “CW room-temperature blue upconversion fibre laser,” Electron. Lett. 28, 1243–1244 (1992).
[CrossRef]

Boehm, L.

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
[CrossRef]

Booth, I. J.

I. J. Booth, J.-L. Archambault, and B. F. Ventrudo, “Photodegradation of near-infrared-pumped Tm3+-doped ZBLAN fiber upconversion lasers,” Opt. Lett. 21, 348–350 (1996).
[CrossRef] [PubMed]

I. J. Booth, C. J. Mackechnie, and B. F. Ventrudo, “Operation of diode laser pumped Tm3+ ZBLAN upconversion fiber laser at 482 nm,” IEEE J. Quantum Electron. 32, 118–123 (1996).
[CrossRef]

Cannon, R. S.

S. G. Grubb, K. W. Bennett, R. S. Cannon, and W. F. Humer, “CW room-temperature blue upconversion fibre laser,” Electron. Lett. 28, 1243–1244 (1992).
[CrossRef]

Chandonnet, A.

Duclos, F.

Grubb, S. G.

S. G. Grubb, K. W. Bennett, R. S. Cannon, and W. F. Humer, “CW room-temperature blue upconversion fibre laser,” Electron. Lett. 28, 1243–1244 (1992).
[CrossRef]

Hanna, D. C.

Humer, W. F.

S. G. Grubb, K. W. Bennett, R. S. Cannon, and W. F. Humer, “CW room-temperature blue upconversion fibre laser,” Electron. Lett. 28, 1243–1244 (1992).
[CrossRef]

Laperle, P.

Mackechnie, C. J.

I. J. Booth, C. J. Mackechnie, and B. F. Ventrudo, “Operation of diode laser pumped Tm3+ ZBLAN upconversion fiber laser at 482 nm,” IEEE J. Quantum Electron. 32, 118–123 (1996).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954–957 (1964).
[CrossRef]

Mehuys, D. G.

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, “Laser diode pumped 106 mW blue upconversion fiber laser,” Appl. Phys. Lett. 67, 1815–1817 (1995).
[CrossRef]

Oomen, E. W. L.

E. W. L. Oomen, “Up-conversion of red light into blue light in thulium doped fluorozirconate glasses,” J. Lumin. 50, 317–331 (1992).
[CrossRef]

Paschotta, R.

Reisfeld, R.

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
[CrossRef]

Sanders, S.

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, “Laser diode pumped 106 mW blue upconversion fiber laser,” Appl. Phys. Lett. 67, 1815–1817 (1995).
[CrossRef]

Spector, N.

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
[CrossRef]

Tropper, A. C.

Urquhart, P.

Vallée, R.

Ventrudo, B. F.

I. J. Booth, C. J. Mackechnie, and B. F. Ventrudo, “Operation of diode laser pumped Tm3+ ZBLAN upconversion fiber laser at 482 nm,” IEEE J. Quantum Electron. 32, 118–123 (1996).
[CrossRef]

I. J. Booth, J.-L. Archambault, and B. F. Ventrudo, “Photodegradation of near-infrared-pumped Tm3+-doped ZBLAN fiber upconversion lasers,” Opt. Lett. 21, 348–350 (1996).
[CrossRef] [PubMed]

Waarts, R. G.

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, “Laser diode pumped 106 mW blue upconversion fiber laser,” Appl. Phys. Lett. 67, 1815–1817 (1995).
[CrossRef]

Welch, D. F.

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, “Laser diode pumped 106 mW blue upconversion fiber laser,” Appl. Phys. Lett. 67, 1815–1817 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

S. Sanders, R. G. Waarts, D. G. Mehuys, and D. F. Welch, “Laser diode pumped 106 mW blue upconversion fiber laser,” Appl. Phys. Lett. 67, 1815–1817 (1995).
[CrossRef]

Chem. Phys. Lett. (1)

N. Spector, R. Reisfeld, and L. Boehm, “Eigenstates and radiative transition probabilities for Tm3+ (4f12) in phosphate and tellurite glasses,” Chem. Phys. Lett. 49, 49–53 (1977).
[CrossRef]

Electron. Lett. (1)

S. G. Grubb, K. W. Bennett, R. S. Cannon, and W. F. Humer, “CW room-temperature blue upconversion fibre laser,” Electron. Lett. 28, 1243–1244 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. J. Booth, C. J. Mackechnie, and B. F. Ventrudo, “Operation of diode laser pumped Tm3+ ZBLAN upconversion fiber laser at 482 nm,” IEEE J. Quantum Electron. 32, 118–123 (1996).
[CrossRef]

J. Lumin. (1)

E. W. L. Oomen, “Up-conversion of red light into blue light in thulium doped fluorozirconate glasses,” J. Lumin. 50, 317–331 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Phys. Rev. A (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954–957 (1964).
[CrossRef]

Other (3)

P. R. Barber, C. J. Mackechnie, R. D. T. Lauder, H. M. Pask, A. C. Tropper, D. C. Hanna, S. D. Butterworth, M. J. McCarthy, J.-L. Archambault, and L. Reekie, “All solid state blue room temperature thulium-doped upconversion fiber laser,” in Compact Blue-Green Lasers, Vol. 1 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CFA3.

P. R. Barber, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Improved blue laser results and photochromic effects in Tm:ZBLAN fibre,” presented at the Twelfth UK National Quantum Electronics Conference, Southampton, UK, 1995.

L. Wetenkamp, “Charakterisierung von laseraktiven dotierten Schwermetallfluorid-Gläsern und Faserlasern,” Ph.D. dissertation (Technische Universität Carolo-Wilhelmina, Braunschweig, Germany, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Tm:ZBLAN levels (with the definition of the numbering that we use in this paper), pump and laser transitions (bold arrows), and all fluorescence lines that are taken into account by the model. The numbers alongside the arrows are wavelengths in nanometers.

Fig. 2
Fig. 2

Fluorescence spectrum (in side light) of fiber 2 for a pump power of 41 mW at 1140 nm, with the Tm transitions assigned to the fluorescence lines. (The spectrum is not corrected for the wavelength-dependent response of the spectrometer.)

Fig. 3
Fig. 3

Fluorescence powers from levels 4 (triangles), 6 (rectangles), and 7 (diamonds) for fiber 1. The theoretical curves were fitted to the experimental data by adjustment of the cross section σ25 and the detection efficiencies.

Fig. 4
Fig. 4

450- (diamonds) and 290-nm (circles) fluorescence power versus 1140-nm pump power for fiber 2. Diagonal crosses, scaled product n6n4, calculated from 475- and 800-nm fluorescence, demonstrating the same power dependence as the 450-nm fluorescence. Dots, scaled values of n62 calculated from 475-nm fluorescence. Plus signs, scaled values of n62 plus a term proportional to pump power and n7, exactly matching the power dependence of the 290-nm fluorescence from level 8.

Fig. 5
Fig. 5

475- (squares) and 800-nm (triangles) fluorescence power versus 1140-nm pump power for fiber 3. The solid curves are from the model that contains the energy transfer coefficients as derived from the fluorescence of the higher-lying levels. The dashed and dotted curves show the expected fluorescence powers if there were no energy transfers. This demonstrates that the energy transfers have significant influence on the level populations and are modeled with good accuracy.

Fig. 6
Fig. 6

Experimental threshold (rectangles) and slope efficiency (triangles) with respect to launched pump power of a blue laser made with 1 m of fiber 1, and theoretical curves (with 0.4 dB/m background signal loss) from the computer model.

Fig. 7
Fig. 7

Optimum fiber length in decimeters (dashed curve), optimum output mirror reflectivity (dotted curve), and expected 480-nm, output power (solid curve) versus available launched 1140-nm pump power calculated for the parameters of fiber 1.

Tables (2)

Tables Icon

Table 1 Parameters of Investigated Fibers

Tables Icon

Table 2 Pump and Signal Cross Sections for λp=1140 nm and λp=480 nm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dn1dt=-R13n1+A21n2+A41n4+A61n6,
dn2dt=R13n1-R25n2-A21n2+A42n4+(A62+A63)n6,
dn4dt=R25n2-R46n4+R64n6+(A64+A65)n6-A4n4,
dn6dt=R46n4-R64n6-A6n6.
n30,n50,n1+n2+n4+n61.
R13=σ13 Iphνp,

Metrics