U. Peskin, W. H. Miller, and Å Edlund, “Quantum time evolution in time-dependent fields and time-independent reactive-scattering calculations via an efficient Fourier grid preconditioner,” J. Chem. Phys. 103, 10030 (1995).

[CrossRef]

U. Peskin and N. Moiseyev, “The solution of the time-dependent Schrödinger equation by the (t, t^{′}) method—theory, computational algorithm and applications,” J. Chem. Phys. 99, 4590 (1993).

[CrossRef]

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335 (1990).

[CrossRef]

R. E. Prange and S. Fishman, “Experimental realization of kicked quantum chaotic systems,” Phys. Rev. Lett. 63, 704 (1989).

[CrossRef]
[PubMed]

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335 (1990).

[CrossRef]

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335 (1990).

[CrossRef]

U. Peskin, W. H. Miller, and Å Edlund, “Quantum time evolution in time-dependent fields and time-independent reactive-scattering calculations via an efficient Fourier grid preconditioner,” J. Chem. Phys. 103, 10030 (1995).

[CrossRef]

R. E. Prange and S. Fishman, “Experimental realization of kicked quantum chaotic systems,” Phys. Rev. Lett. 63, 704 (1989).

[CrossRef]
[PubMed]

U. Peskin, W. H. Miller, and Å Edlund, “Quantum time evolution in time-dependent fields and time-independent reactive-scattering calculations via an efficient Fourier grid preconditioner,” J. Chem. Phys. 103, 10030 (1995).

[CrossRef]

U. Peskin and N. Moiseyev, “The solution of the time-dependent Schrödinger equation by the (t, t^{′}) method—theory, computational algorithm and applications,” J. Chem. Phys. 99, 4590 (1993).

[CrossRef]

U. Peskin, W. H. Miller, and Å Edlund, “Quantum time evolution in time-dependent fields and time-independent reactive-scattering calculations via an efficient Fourier grid preconditioner,” J. Chem. Phys. 103, 10030 (1995).

[CrossRef]

U. Peskin and N. Moiseyev, “The solution of the time-dependent Schrödinger equation by the (t, t^{′}) method—theory, computational algorithm and applications,” J. Chem. Phys. 99, 4590 (1993).

[CrossRef]

R. E. Prange and S. Fishman, “Experimental realization of kicked quantum chaotic systems,” Phys. Rev. Lett. 63, 704 (1989).

[CrossRef]
[PubMed]

Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335 (1990).

[CrossRef]

U. Peskin, W. H. Miller, and Å Edlund, “Quantum time evolution in time-dependent fields and time-independent reactive-scattering calculations via an efficient Fourier grid preconditioner,” J. Chem. Phys. 103, 10030 (1995).

[CrossRef]

U. Peskin and N. Moiseyev, “The solution of the time-dependent Schrödinger equation by the (t, t^{′}) method—theory, computational algorithm and applications,” J. Chem. Phys. 99, 4590 (1993).

[CrossRef]

R. E. Prange and S. Fishman, “Experimental realization of kicked quantum chaotic systems,” Phys. Rev. Lett. 63, 704 (1989).

[CrossRef]
[PubMed]

M. D. Feit, J. A. Fleck, and A. Steiger, “Solution of the Schrödinger equation by a spectral method,” J. Compu. Phys. 47, 412 (1982); M. D. Feit and J. A. Fleck, Jr., “Simple spectral method for solving propagation problems in cylindrical geometry with fast Fourier transforms,” Opt. Lett. 14, 662 (1989).

[CrossRef]
[PubMed]

R. Kosloff, in Time-Dependent Quantum Molecular Dynamics, NATO ASI Series B299, J. Broeckhave and L. Lathouwers, eds. (Plenum, New York, 1992), p. 92.

I. Vorobeichik, U. Peskin, and N. Moiseyev, “Modal losses and design of modal irradiance patterns in an optical fiber by the complex scaled (t, t^{′}) method,” J. Opt. Soc. Am. B 12, 1133 (1995); “Propagation of light beam in optical fiber by the (t, t^{′}) method,” Non-Linear Opt. 11, 79 (1995);

[CrossRef]

See, for example, recent simulations of large-scale strongly coupled scattering problems (as occur in four-center reactions) involving millions of basis functions: U. Manthe, T. Seideman, and W. H. Miller, “Full-dimensional quantum mechanical calculation of the rate constant for the H_{2}+OH→H_{2}O+H reaction,” J. Chem. Phys. 99, 10078 (1193); D. H. Zhang and J. Z. H. Zhang, “Full-dimensional time-dependent treatment for diatom–diatom reaction—the H_{2}+OH reaction,” J. Chem. Phys. 101, 1146 (1994); D. Neuhauser, “Fully quantal initial-state-selected reaction probabilities (j=0) for a four-atom system—H_{2}(v= 0, 1, j=0)+OH(v=0, 1, j=0)→H + H_{2}O,” J. Chem. Phys. JCPSA6 100, 9272 (1994).

[CrossRef]

A. W. Snyder and S. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).