Abstract

We investigate a general theory of optical bistability for a four-level system with single and triple states. Both absorptive and dispersive mechanisms are included. By solving the stable-state equation of a density matrix and using the mean-field approximation, we derive the state equation of bistability. The bistabilities with dispersion and absorption of single and triplet states, including pure dispersion and pure absorption, are numerically studied. The effects of cooperative parameters, resonant transition detuning, and cavity detuning parameters on bistable behavior are analyzed. We find that the absorption of triplet states is beneficial to dispersive bistability but is detrimental to absorptive bistability. The detuning of the resonant transition between single states is detrimental to bistability, whereas that between triplet states is beneficial to bistability. The structure of four levels with single and triplet states is a typicality of organic media. Our analysis is helpful for research into bistability devices of organic media.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For example, G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photo absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995); G. L. Wood, M. J. Miller, and A. G. Mott, “Investigation of tetrabenzporphyrin by the z-scan technique,” Opt. Lett. 20, 973–975 (1995); D. V. Petrov, A. S. L. Gomes, C. B. de Araujo, J. M. de Souza, W. M. de Azevedo, J. V. de Melo, and F. B. Diniz, “Non-linear optical properties of a poly(vinyl alcohol)-polyaniline interpenetrating polymer network,” Opt. Lett. OPLEDP 20, 554–556 (1995).
    [CrossRef] [PubMed]
  2. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
    [CrossRef]
  3. H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
    [CrossRef]
  4. S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, “Use of a diode laser to observe room-temperature, low-power optical bistability in a GaAs–AlGaAs etalon,” Appl. Phys. Lett. 44, 360–361 (1984).
    [CrossRef]
  5. D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: application of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
    [CrossRef]
  6. A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two-photon excitation,” Appl. Phys. Lett. 42, 334–336 (1983).
    [CrossRef]
  7. M. Dagenais and H. G. Winful, “Low power transverse optical bistability near bound excitons in cadmium sulfide,” Appl. Phys. Lett. 44, 574–576 (1984).
    [CrossRef]
  8. G. P. Bava, F. Castelli, P. Debernardi, and L. A. Lugiato, “Optical bistability in a multiple-quantum-well structure with Fabry–Perot and distributed-feedback resonantors,” Phys. Rev. A 45, 5180–5186 (1992).
    [CrossRef] [PubMed]
  9. S. Gong, S. Pan, and G. Yang, “Optical bistability in a dye-ring cavity,” Phys. Rev. A 45, 6655–6658 (1992).
    [CrossRef] [PubMed]
  10. S. Gong, S. Pan, and G. Yang, “Stability analysis for an optical bistable dye system,” Phys. Rev. A 47, 2205–2210 (1993).
    [CrossRef] [PubMed]
  11. J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot etalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
    [CrossRef]
  12. A. D. Lloyd and B. S. Wherrett, “All-optics bistability in nematic liquid crystals at 20-μW power levels,” Appl. Phys. Lett. 53, 460–461 (1988).
    [CrossRef]
  13. B. P. Singh and P. N. Prasad, “Optical bistable behavior of a planar quasi-waveguide interferometer mode with a con-jugated organic polymer film,” J. Opt. Soc. Am. B 5, 453–456 (1988).
    [CrossRef]
  14. K. Sasaki, K. Fujii, and T. Tomioka, “All-optical bistabilities of polydiacetylene Langmuir–Blodgett film waveguides,” J. Opt. Soc. Am. B 5, 457–461 (1988).
    [CrossRef]
  15. F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
    [CrossRef]
  16. A. Szoke, V. Daneu, J. Goldhar, and N. A. Kumit, “Bistable optical element and its applications,” Appl. Phys. Lett. 15, 376–379 (1969).
    [CrossRef]
  17. S. L. McCall, “Instability in continuous-wave light propagation in absorbing media,” Phys. Rev. A 9, 1515–1523 (1974).
    [CrossRef]
  18. F. S. Felber and J. H. Marburger, “Theory of nonresonant multistable optical devices,” Appl. Phys. Lett. 28, 731–733 (1976).
    [CrossRef]
  19. R. Bonifacio and L. A. Lugiato, “Cooperative effects and bistability for resonance fluorescence,” Opt. Commun. 19, 172–176 (1976).
    [CrossRef]
  20. J. H. Marburger and F. S. Felber, “Theory of a lossless nonlinear Fabry–Perot interferometer,” Phys. Rev. A 17, 335–342 (1978).
    [CrossRef]
  21. G. P. Agrawal and H. J. Carmichael, “Optical bistability through nonlinear dispersion and absorption,” Phys. Rev. A 19, 2074–2086 (1979).
    [CrossRef]
  22. Y. Ji and F. Lin, “Effect of triplet-state absorption on optical bistability in a four-level system,” J. Opt. Soc. Am. B 12, 1595–1601 (1995).
    [CrossRef]

1995 (1)

1993 (2)

S. Gong, S. Pan, and G. Yang, “Stability analysis for an optical bistable dye system,” Phys. Rev. A 47, 2205–2210 (1993).
[CrossRef] [PubMed]

F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
[CrossRef]

1992 (2)

G. P. Bava, F. Castelli, P. Debernardi, and L. A. Lugiato, “Optical bistability in a multiple-quantum-well structure with Fabry–Perot and distributed-feedback resonantors,” Phys. Rev. A 45, 5180–5186 (1992).
[CrossRef] [PubMed]

S. Gong, S. Pan, and G. Yang, “Optical bistability in a dye-ring cavity,” Phys. Rev. A 45, 6655–6658 (1992).
[CrossRef] [PubMed]

1988 (3)

1984 (3)

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot etalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
[CrossRef]

M. Dagenais and H. G. Winful, “Low power transverse optical bistability near bound excitons in cadmium sulfide,” Appl. Phys. Lett. 44, 574–576 (1984).
[CrossRef]

S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, “Use of a diode laser to observe room-temperature, low-power optical bistability in a GaAs–AlGaAs etalon,” Appl. Phys. Lett. 44, 360–361 (1984).
[CrossRef]

1983 (1)

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two-photon excitation,” Appl. Phys. Lett. 42, 334–336 (1983).
[CrossRef]

1982 (1)

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

1979 (3)

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: application of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[CrossRef]

G. P. Agrawal and H. J. Carmichael, “Optical bistability through nonlinear dispersion and absorption,” Phys. Rev. A 19, 2074–2086 (1979).
[CrossRef]

1978 (1)

J. H. Marburger and F. S. Felber, “Theory of a lossless nonlinear Fabry–Perot interferometer,” Phys. Rev. A 17, 335–342 (1978).
[CrossRef]

1976 (2)

F. S. Felber and J. H. Marburger, “Theory of nonresonant multistable optical devices,” Appl. Phys. Lett. 28, 731–733 (1976).
[CrossRef]

R. Bonifacio and L. A. Lugiato, “Cooperative effects and bistability for resonance fluorescence,” Opt. Commun. 19, 172–176 (1976).
[CrossRef]

1974 (1)

S. L. McCall, “Instability in continuous-wave light propagation in absorbing media,” Phys. Rev. A 9, 1515–1523 (1974).
[CrossRef]

1969 (1)

A. Szoke, V. Daneu, J. Goldhar, and N. A. Kumit, “Bistable optical element and its applications,” Appl. Phys. Lett. 15, 376–379 (1969).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and H. J. Carmichael, “Optical bistability through nonlinear dispersion and absorption,” Phys. Rev. A 19, 2074–2086 (1979).
[CrossRef]

Bava, G. P.

G. P. Bava, F. Castelli, P. Debernardi, and L. A. Lugiato, “Optical bistability in a multiple-quantum-well structure with Fabry–Perot and distributed-feedback resonantors,” Phys. Rev. A 45, 5180–5186 (1992).
[CrossRef] [PubMed]

Bonifacio, R.

R. Bonifacio and L. A. Lugiato, “Cooperative effects and bistability for resonance fluorescence,” Opt. Commun. 19, 172–176 (1976).
[CrossRef]

Carmichael, H. J.

G. P. Agrawal and H. J. Carmichael, “Optical bistability through nonlinear dispersion and absorption,” Phys. Rev. A 19, 2074–2086 (1979).
[CrossRef]

Castelli, F.

G. P. Bava, F. Castelli, P. Debernardi, and L. A. Lugiato, “Optical bistability in a multiple-quantum-well structure with Fabry–Perot and distributed-feedback resonantors,” Phys. Rev. A 45, 5180–5186 (1992).
[CrossRef] [PubMed]

Dagenais, M.

M. Dagenais and H. G. Winful, “Low power transverse optical bistability near bound excitons in cadmium sulfide,” Appl. Phys. Lett. 44, 574–576 (1984).
[CrossRef]

Daneu, V.

A. Szoke, V. Daneu, J. Goldhar, and N. A. Kumit, “Bistable optical element and its applications,” Appl. Phys. Lett. 15, 376–379 (1969).
[CrossRef]

Davis, B.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two-photon excitation,” Appl. Phys. Lett. 42, 334–336 (1983).
[CrossRef]

Debernardi, P.

G. P. Bava, F. Castelli, P. Debernardi, and L. A. Lugiato, “Optical bistability in a multiple-quantum-well structure with Fabry–Perot and distributed-feedback resonantors,” Phys. Rev. A 45, 5180–5186 (1992).
[CrossRef] [PubMed]

Felber, F. S.

J. H. Marburger and F. S. Felber, “Theory of a lossless nonlinear Fabry–Perot interferometer,” Phys. Rev. A 17, 335–342 (1978).
[CrossRef]

F. S. Felber and J. H. Marburger, “Theory of nonresonant multistable optical devices,” Appl. Phys. Lett. 28, 731–733 (1976).
[CrossRef]

Fujii, K.

Gibbs, H. M.

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot etalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
[CrossRef]

S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, “Use of a diode laser to observe room-temperature, low-power optical bistability in a GaAs–AlGaAs etalon,” Appl. Phys. Lett. 44, 360–361 (1984).
[CrossRef]

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

Goldhar, J.

A. Szoke, V. Daneu, J. Goldhar, and N. A. Kumit, “Bistable optical element and its applications,” Appl. Phys. Lett. 15, 376–379 (1969).
[CrossRef]

Gong, S.

S. Gong, S. Pan, and G. Yang, “Stability analysis for an optical bistable dye system,” Phys. Rev. A 47, 2205–2210 (1993).
[CrossRef] [PubMed]

S. Gong, S. Pan, and G. Yang, “Optical bistability in a dye-ring cavity,” Phys. Rev. A 45, 6655–6658 (1992).
[CrossRef] [PubMed]

Gossard, A. C.

S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, “Use of a diode laser to observe room-temperature, low-power optical bistability in a GaAs–AlGaAs etalon,” Appl. Phys. Lett. 44, 360–361 (1984).
[CrossRef]

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

Jewell, J. L.

S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, “Use of a diode laser to observe room-temperature, low-power optical bistability in a GaAs–AlGaAs etalon,” Appl. Phys. Lett. 44, 360–361 (1984).
[CrossRef]

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot etalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
[CrossRef]

Jewll, J. L.

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

Ji, Y.

Jiang, M.

F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
[CrossRef]

Johnston, A.

D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: application of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[CrossRef]

Kar, A. K.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two-photon excitation,” Appl. Phys. Lett. 42, 334–336 (1983).
[CrossRef]

Kumit, N. A.

A. Szoke, V. Daneu, J. Goldhar, and N. A. Kumit, “Bistable optical element and its applications,” Appl. Phys. Lett. 15, 376–379 (1969).
[CrossRef]

Lin, F.

Y. Ji and F. Lin, “Effect of triplet-state absorption on optical bistability in a four-level system,” J. Opt. Soc. Am. B 12, 1595–1601 (1995).
[CrossRef]

F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
[CrossRef]

Lloyd, A. D.

A. D. Lloyd and B. S. Wherrett, “All-optics bistability in nematic liquid crystals at 20-μW power levels,” Appl. Phys. Lett. 53, 460–461 (1988).
[CrossRef]

Lugiato, L. A.

G. P. Bava, F. Castelli, P. Debernardi, and L. A. Lugiato, “Optical bistability in a multiple-quantum-well structure with Fabry–Perot and distributed-feedback resonantors,” Phys. Rev. A 45, 5180–5186 (1992).
[CrossRef] [PubMed]

R. Bonifacio and L. A. Lugiato, “Cooperative effects and bistability for resonance fluorescence,” Opt. Commun. 19, 172–176 (1976).
[CrossRef]

Luo, T.

F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
[CrossRef]

Marburger, J. H.

J. H. Marburger and F. S. Felber, “Theory of a lossless nonlinear Fabry–Perot interferometer,” Phys. Rev. A 17, 335–342 (1978).
[CrossRef]

F. S. Felber and J. H. Marburger, “Theory of nonresonant multistable optical devices,” Appl. Phys. Lett. 28, 731–733 (1976).
[CrossRef]

Mathew, J. G. H.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two-photon excitation,” Appl. Phys. Lett. 42, 334–336 (1983).
[CrossRef]

McCall, S. L.

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

S. L. McCall, “Instability in continuous-wave light propagation in absorbing media,” Phys. Rev. A 9, 1515–1523 (1974).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: application of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[CrossRef]

Pan, S.

S. Gong, S. Pan, and G. Yang, “Stability analysis for an optical bistable dye system,” Phys. Rev. A 47, 2205–2210 (1993).
[CrossRef] [PubMed]

S. Gong, S. Pan, and G. Yang, “Optical bistability in a dye-ring cavity,” Phys. Rev. A 45, 6655–6658 (1992).
[CrossRef] [PubMed]

Passner, A.

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

Peyghambarian, N.

S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, “Use of a diode laser to observe room-temperature, low-power optical bistability in a GaAs–AlGaAs etalon,” Appl. Phys. Lett. 44, 360–361 (1984).
[CrossRef]

Prasad, P. N.

Prettl, W.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two-photon excitation,” Appl. Phys. Lett. 42, 334–336 (1983).
[CrossRef]

Qian, Q.

F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
[CrossRef]

Rushford, M. C.

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot etalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
[CrossRef]

Sasaki, K.

Singh, B. P.

Smith, S. D.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two-photon excitation,” Appl. Phys. Lett. 42, 334–336 (1983).
[CrossRef]

D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: application of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[CrossRef]

Szoke, A.

A. Szoke, V. Daneu, J. Goldhar, and N. A. Kumit, “Bistable optical element and its applications,” Appl. Phys. Lett. 15, 376–379 (1969).
[CrossRef]

Tai, K. C.

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

Tarng, S. S.

S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, “Use of a diode laser to observe room-temperature, low-power optical bistability in a GaAs–AlGaAs etalon,” Appl. Phys. Lett. 44, 360–361 (1984).
[CrossRef]

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

Tomioka, T.

Venkatesan, T.

S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, “Use of a diode laser to observe room-temperature, low-power optical bistability in a GaAs–AlGaAs etalon,” Appl. Phys. Lett. 44, 360–361 (1984).
[CrossRef]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

Weinberger, D. A.

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

Wherrett, B. S.

A. D. Lloyd and B. S. Wherrett, “All-optics bistability in nematic liquid crystals at 20-μW power levels,” Appl. Phys. Lett. 53, 460–461 (1988).
[CrossRef]

Wiegmann, W.

S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, “Use of a diode laser to observe room-temperature, low-power optical bistability in a GaAs–AlGaAs etalon,” Appl. Phys. Lett. 44, 360–361 (1984).
[CrossRef]

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

Winful, H. G.

M. Dagenais and H. G. Winful, “Low power transverse optical bistability near bound excitons in cadmium sulfide,” Appl. Phys. Lett. 44, 574–576 (1984).
[CrossRef]

Wu, Z.

F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
[CrossRef]

Xie, Y.

F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
[CrossRef]

Yang, G.

S. Gong, S. Pan, and G. Yang, “Stability analysis for an optical bistable dye system,” Phys. Rev. A 47, 2205–2210 (1993).
[CrossRef] [PubMed]

S. Gong, S. Pan, and G. Yang, “Optical bistability in a dye-ring cavity,” Phys. Rev. A 45, 6655–6658 (1992).
[CrossRef] [PubMed]

Zeng, H.

F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
[CrossRef]

Zhao, J.

F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
[CrossRef]

Appl. Phys. Lett. (10)

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

H. M. Gibbs, S. S. Tarng, J. L. Jewll, D. A. Weinberger, K. C. Tai, A. C. Gossard, S. L. McCall, A. Passner, and W. Wiegmann, “Room-temperature excitonic optical bistability in a GaAs–GaAlAs superlattice etalon,” Appl. Phys. Lett. 41, 221–222 (1982).
[CrossRef]

S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, “Use of a diode laser to observe room-temperature, low-power optical bistability in a GaAs–AlGaAs etalon,” Appl. Phys. Lett. 44, 360–361 (1984).
[CrossRef]

D. A. B. Miller, S. D. Smith, and A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: application of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[CrossRef]

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two-photon excitation,” Appl. Phys. Lett. 42, 334–336 (1983).
[CrossRef]

M. Dagenais and H. G. Winful, “Low power transverse optical bistability near bound excitons in cadmium sulfide,” Appl. Phys. Lett. 44, 574–576 (1984).
[CrossRef]

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot etalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
[CrossRef]

A. D. Lloyd and B. S. Wherrett, “All-optics bistability in nematic liquid crystals at 20-μW power levels,” Appl. Phys. Lett. 53, 460–461 (1988).
[CrossRef]

A. Szoke, V. Daneu, J. Goldhar, and N. A. Kumit, “Bistable optical element and its applications,” Appl. Phys. Lett. 15, 376–379 (1969).
[CrossRef]

F. S. Felber and J. H. Marburger, “Theory of nonresonant multistable optical devices,” Appl. Phys. Lett. 28, 731–733 (1976).
[CrossRef]

J. Appl. Phys. (1)

F. Lin, J. Zhao, T. Luo, M. Jiang, Z. Wu, Y. Xie, Q. Qian, and H. Zeng, “Optical limitation and bistability in fullerenes,” J. Appl. Phys. 74, 2140–2142 (1993).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

R. Bonifacio and L. A. Lugiato, “Cooperative effects and bistability for resonance fluorescence,” Opt. Commun. 19, 172–176 (1976).
[CrossRef]

Phys. Rev. A (6)

J. H. Marburger and F. S. Felber, “Theory of a lossless nonlinear Fabry–Perot interferometer,” Phys. Rev. A 17, 335–342 (1978).
[CrossRef]

G. P. Agrawal and H. J. Carmichael, “Optical bistability through nonlinear dispersion and absorption,” Phys. Rev. A 19, 2074–2086 (1979).
[CrossRef]

S. L. McCall, “Instability in continuous-wave light propagation in absorbing media,” Phys. Rev. A 9, 1515–1523 (1974).
[CrossRef]

G. P. Bava, F. Castelli, P. Debernardi, and L. A. Lugiato, “Optical bistability in a multiple-quantum-well structure with Fabry–Perot and distributed-feedback resonantors,” Phys. Rev. A 45, 5180–5186 (1992).
[CrossRef] [PubMed]

S. Gong, S. Pan, and G. Yang, “Optical bistability in a dye-ring cavity,” Phys. Rev. A 45, 6655–6658 (1992).
[CrossRef] [PubMed]

S. Gong, S. Pan, and G. Yang, “Stability analysis for an optical bistable dye system,” Phys. Rev. A 47, 2205–2210 (1993).
[CrossRef] [PubMed]

Other (1)

For example, G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, “Two-photo absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995); G. L. Wood, M. J. Miller, and A. G. Mott, “Investigation of tetrabenzporphyrin by the z-scan technique,” Opt. Lett. 20, 973–975 (1995); D. V. Petrov, A. S. L. Gomes, C. B. de Araujo, J. M. de Souza, W. M. de Azevedo, J. V. de Melo, and F. B. Diniz, “Non-linear optical properties of a poly(vinyl alcohol)-polyaniline interpenetrating polymer network,” Opt. Lett. OPLEDP 20, 554–556 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Energy-level diagram. μ21 is the dipole matrix element between levels 1 and 2, and μ43 is that between levels 3 and 4. γ is the transition rate of the intersystem crossing. γ43 is the relaxation rate from level 4 to level 3, and γ21 is that from level 2 to level 1. T-1 is the collapse relaxation probability from level 3 to level 1.

Fig. 2
Fig. 2

Purely dispersive bistability curves. Solid curves are for C0=65, δ12=25, δ34=-50, Θ=0, and the values of CT shown. The dashed curve with CT=0 and δ34=0 represents the case of a two-level system.

Fig. 3
Fig. 3

Purely dispersive bistability curves. Curves are for CT=40, δ12=25, δ34=-50, Θ=0, and values of C0 shown.

Fig. 4
Fig. 4

Bistability curves for various values of |δ34|, with C0 =10, CT=0.2, and δ12=Θ=0.

Fig. 5
Fig. 5

Bistability curves for various values of |δ12|, with C0 =10, CT=0.2, and δ34=Θ=0.

Fig. 6
Fig. 6

(a) Bistability curves for various values of δ12, with C0 =10, CT=0.2, δ34=1, and Θ=0. (b) Bistability curves for continuous values of δ12 from -4 to 4, with C0=10, CT=0.2, δ34=1, and Θ=0.

Fig. 7
Fig. 7

(a) Bistability curves for various values of δ34, with C0 =10, CT=0.2, δ12=-1, and Θ=0. (b) Bistability curves for continuous values of δ34 from -4 to 4, with C0=10, CT =0.2, δ12=-1, and Θ=0.

Fig. 8
Fig. 8

(a) Bistability curves for various values of Θ, with C0 =10, CT=0.2, δ12=-1, and δ34=1. (b) Bistability curves for continuous values of Θ from -4 to 4, with C0=10, CT =0.2, δ12=-1, and δ34=1.

Fig. 9
Fig. 9

Bistability curves for various values of CT, with C0 =10 and δ12=δ34=Θ=0. The dashed curve corresponds to the case of the two-level system.

Fig. 10
Fig. 10

Bistability curves for various values of |Θ|, with C0 =10, CT=0.2, and δ12=δ34=0.

Fig. 11
Fig. 11

Effects of parameters on the hysteresis loop of a bistability curve. With an increase of relative parameters along the directions of the arrows, the hysteresis loop increases.

Fig. 12
Fig. 12

Effect of parameters on the threshold of incident-light intensity for switching on bistability. With an increase of relative parameters along the directions of the arrows, the threshold decreases.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

ρ˙11=ρ33/T+ρ22γ21-μ21E0i2(ρ˜12-ρ˜21),
ρ˙22=-ρ22γ-ρ22γ21+μ21E0i2(ρ˜12-ρ˜21),
ρ˙33=-ρ33/T+ρ22γ+γ43ρ44-μ43E0i2(ρ˜34-ρ˜43),
ρ˙44=-γ43ρ44+μ43E0i2(ρ˜34-ρ˜43),
ρ˜˙21=-[i(ω21-ω)+γ]ρ˜21-μ21E0i2(ρ22-ρ11),
ρ˜˙43=-[i(ω43-ω)+γ]ρ˜43-μ43E0i2(ρ44-ρ33),
ρ11+ρ22+ρ33+ρ44=1,
P˜(+)=N(μ43ρ˜43+μ21ρ˜21)=(E0/2)0χ,
P˜(+)=iE00α0(1+iδ12)2k0(1+δ122+E02/Es2)+iE00αT(1+iδ34)E02/Es22k0(1+δ342)(1+δ122+E02/Es2),
χ=-α0δ12k0(1+δ122+E02/Es2)+αTδ34E02/Es2k0(1+δ342)(1+δ122+E02/Es2)+iα0k0(1+δ122+E02/Es2)+αTE02/Es2k0(1+δ342)(1+δ122+E02/Es2).
Et=(1-R)Ei1-R(1+ik0Lχ-iθ),
y2=x21+2C01+δ122+x2+2CTx2(1+δ342)(1+δ122+x2)2+Θ+2C0δ121+δ122+x2+2CTδ34x2(1+δ342)(1+δ122+x2)2,
δ34/(1+δ342)1/δ34.
n=1-α0δ122k0(1+δ122+E02/Es2)-αTE02/Es22k0δ34(1+δ122+E02/Es2).
y2=x21+Θ+2C0δ121+δ122+x2+2CTx2δ34(1+δ122+x2)2.
δ121+δ122+E02/Es21δ12-E02/Es2δ123,
E02/Es21+δ122+E02/Es21+E02/Es2δ124+E02/Es2δ122.
n=1-α02k0δ12-αT2k0δ124δ34+E02Es2α02k0δ123-αT2k0δ122δ34-αT2k0δ124δ34.
y2=x21+Θ+2C0δ12+2CTδ34δ124-2C0x2δ123+2CTx2δ34δ122+2CTx2δ34δ1242.
y2=x21+2C01+x2+2CTx2(1+δ342)(1+x2)2+2CTδ34x2(1+δ342)(1+x2)2.
y2=x21+2C01+x22+2CTx2δ34(1+x2)2.
y2=x21+2C0+2CTx21+δ122+x22+2C0δ121+δ122+x22.
y2=x21+2CTx21+δ122+x22+2C0δ1221+δ122+x22.
y2=x21+2CT1+x2δ124+x2δ1222+2C01δ12-x2δ1232.
y=x1+2C0+2CTx21+x2.
y2=x21+2C0+2CTx21+x22+Θ2.
(2C0+1)2(C0-9CT-4)27(C0-CT)>Θ2>0,

Metrics