Abstract

A new organic crystal isopropyl-4-acetylphenylurea (IAPU) was identified as a promising candidate for blue second-harmonic generation (SHG). The nonlinear optical d coefficient obtained is d22=30.5 pm/V at the fundamental wavelength 1064 nm, and the crystal's transmitting range is 380–1400 nm. Thin, single crystalline films fabricated on the glass substrate are useful for waveguide-device applications. For the improvement of SHG efficiency and the relaxation of phase-matching conditions, the concept of thickness-noncritical phase matching (TNCPM) in a four-layer waveguide is proposed. Modal dispersion calculations for the various four-layer structures suggested the possibility of TNCPM from the TE0ω mode to TE12ω mode and from the TE0ω mode to the TE22ω mode by adjustment of the refractive indices of the two guiding layers.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Sym. Ser. 233 (American Chemical Society, Washington, DC, 1983).
  2. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2 (Academic, Orlando, Fla, 1987).
  3. S. Miyata, eds., Proceedings of the Fifth Toyota Conference on Nonlinear Optical Materials (Elsevier Science, Amsterdam, 1992).
  4. Y. Kitaoka, S. Ohmori, K. Yamamoto, M. Kato, and T. Sasaki, “Stable and efficient green light generation by intracavity frequency doubling of Nd:YVO4 lasers,” Appl. Phys. Lett. 63, 299–301 (1993).
    [CrossRef]
  5. W. J. Kzlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett. 56, 2291–2292 (1990).
    [CrossRef]
  6. K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Milliwatt-order blue-light generation in a periodically domain-inverted LiTaO3 waveguide,” Opt. Lett. 16, 1156–1158 (1992).
    [CrossRef]
  7. D. Eger, M. Oron, and M. Katz, “Optical characterization of KTiOPO4 periodically segmented waveguides for second-harmonic generation of blue light,” J. Appl. Phys. 74, 4298–4302 (1993).
    [CrossRef]
  8. G. I. Stegeman, C. T. Seaton, and R. Zanoni, “Organic films in non-linear integrated optics structures,” Thin Solid Films 152, 231–263 (1987).
    [CrossRef]
  9. H. Itoh, K. Hotta, H. Takara, and K. Sasaki, “Frequency doubling of a Nd:YAG laser by a MNA single crystal thin film on a slab-type optical glass waveguide,” Appl. Opt. 25, 1491–1494 (1986).
    [CrossRef] [PubMed]
  10. P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second-harmonic generation in form of coherent Čerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
    [CrossRef]
  11. T. Uemiya, N. Uenishi, S. Okamoto, K. Chikuma, K. Kumata, T. Kondo, R. Ito, and S. Umegaki, “Frequency doubling of a Nd:YAG laser using a crystal-cored fiber of an organic 4-(N, N-dimethylamino)-3-acetamidonitrobenzene,” Appl. Opt. 31, 7581–7586 (1992).
    [CrossRef] [PubMed]
  12. K. Clays, N. J. Armstrong, and T. L. Penner, “Blue and green Čerenkov-type second-harmonic generation in a polymeric Langmuir–Blodgett waveguide,” J. Opt. Soc. Am. B 10, 886–893 (1993).
    [CrossRef]
  13. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 17, 435–436 (1993).
    [CrossRef]
  14. K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
    [CrossRef]
  15. G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
    [CrossRef]
  16. T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson, and M. C. Etter, “Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials,” J. Am. Chem. Soc. 109, 7786–7797 (1987).
    [CrossRef]
  17. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
    [CrossRef]
  18. M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, and J. O. Morley, “Quadratic nonlinear properties of N-(4-nitrophenyl)-L-prolinol and of a newly engineered molecular compound N-(4-nitrophenyl)-N-methylaminoacetonitrile: a comparative study,” J. Opt. Soc. Am. B 4, 977–986 (1987).
    [CrossRef]
  19. J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
    [CrossRef]
  20. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
    [CrossRef] [PubMed]
  21. H. Yamamoto, S. Funato, T. Sugiyama, R. E. Johnson, R. A. Norwood, J. Jung, T. Kinoshita, and K. Sasaki, “Linear and nonlinear optical properties of a new organic crystal N-(4-aminobenzenesulfonyl) acetamide (ABSA),” J. Opt. Soc. Am. B 13, 837–847 (1996).
    [CrossRef]
  22. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
    [CrossRef]
  23. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
    [CrossRef]
  24. O. Sugihara and K. Sasaki, “Phase-matched second-harmonic generation in a 2-methyl-4-nitroaniline single-crystal waveguide: combined structure of grating couplers and four-layer waveguide,” J. Opt. Soc. Am. B 9, 104–107 (1992).
    [CrossRef]
  25. M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir-Blodgett film waveguides by mode conversions,” Adv. Mater. 4, 795–798 (1992).
    [CrossRef]
  26. T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
    [CrossRef]
  27. K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
    [CrossRef]
  28. G. L. J. A. Rikken, C. J. E. Seppen, E. G. J. Staring, and A. H. J. Venhuizen, “Efficient modal dispersion phase-matched frequency doubling in poled polymer waveguides,” Appl. Phys. Lett. 62, 2483–2485 (1993).
    [CrossRef]
  29. T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
    [CrossRef]
  30. H. Ito and H. Inaba, “Efficient phase-matched second-harmonic generation method in four-layered optical-waveguide structure,” Opt. Lett. 2, 139–141 (1978).
    [CrossRef] [PubMed]
  31. N. N. Akhmediev and V. R. Novak, “Enhancement of nonlinear-optical mode conversion efficiency in the thin film waveguide,” Opt. Spectrosc. (USSR) 58, 558–559 (1985).
  32. W. K. Burns and R. A. Andrews, “ “Noncritical” phase matching in optical waveguides,” Appl. Phys. Lett. 22, 143–145 (1973).
    [CrossRef]
  33. W. K. Burns and A. B. Lee, “Observation of noncritically phase-matched second-harmonic generation in an optical waveguide,” Appl. Phys. Lett. 24, 222–224 (1974).
    [CrossRef]
  34. R. A. Norwood and G. Khanarian, “Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide,” Electron. Lett. 26, 2105–2107 (1990).
    [CrossRef]
  35. E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
    [CrossRef]
  36. Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett. 23, 137–138 (1973).
    [CrossRef]
  37. Y. Suematsu, Y. Sasaki, K. Furuya, K. Shibata, and S. Ibukuro, “Optical second-harmonic generation due to guided-wave structure consisting of quartz and glass film,” IEEE J. Quantum Electron. QE-10, 222–229 (1974).
    [CrossRef]
  38. M. Kobayashi and H. Terui, “Refractive index and attenuation characteristics of SiO2–Ta2O5 optical waveguide film,” Appl. Opt. 22, 3121–3127 (1983).
    [CrossRef]

1996 (1)

1994 (3)

K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
[CrossRef]

T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
[CrossRef]

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

1993 (6)

Y. Kitaoka, S. Ohmori, K. Yamamoto, M. Kato, and T. Sasaki, “Stable and efficient green light generation by intracavity frequency doubling of Nd:YVO4 lasers,” Appl. Phys. Lett. 63, 299–301 (1993).
[CrossRef]

D. Eger, M. Oron, and M. Katz, “Optical characterization of KTiOPO4 periodically segmented waveguides for second-harmonic generation of blue light,” J. Appl. Phys. 74, 4298–4302 (1993).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 17, 435–436 (1993).
[CrossRef]

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

K. Clays, N. J. Armstrong, and T. L. Penner, “Blue and green Čerenkov-type second-harmonic generation in a polymeric Langmuir–Blodgett waveguide,” J. Opt. Soc. Am. B 10, 886–893 (1993).
[CrossRef]

G. L. J. A. Rikken, C. J. E. Seppen, E. G. J. Staring, and A. H. J. Venhuizen, “Efficient modal dispersion phase-matched frequency doubling in poled polymer waveguides,” Appl. Phys. Lett. 62, 2483–2485 (1993).
[CrossRef]

1992 (5)

1990 (4)

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

W. J. Kzlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett. 56, 2291–2292 (1990).
[CrossRef]

R. A. Norwood and G. Khanarian, “Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide,” Electron. Lett. 26, 2105–2107 (1990).
[CrossRef]

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[CrossRef]

1987 (3)

M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, and J. O. Morley, “Quadratic nonlinear properties of N-(4-nitrophenyl)-L-prolinol and of a newly engineered molecular compound N-(4-nitrophenyl)-N-methylaminoacetonitrile: a comparative study,” J. Opt. Soc. Am. B 4, 977–986 (1987).
[CrossRef]

G. I. Stegeman, C. T. Seaton, and R. Zanoni, “Organic films in non-linear integrated optics structures,” Thin Solid Films 152, 231–263 (1987).
[CrossRef]

T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson, and M. C. Etter, “Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials,” J. Am. Chem. Soc. 109, 7786–7797 (1987).
[CrossRef]

1986 (1)

1985 (1)

N. N. Akhmediev and V. R. Novak, “Enhancement of nonlinear-optical mode conversion efficiency in the thin film waveguide,” Opt. Spectrosc. (USSR) 58, 558–559 (1985).

1983 (1)

1982 (1)

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

1978 (1)

1974 (2)

Y. Suematsu, Y. Sasaki, K. Furuya, K. Shibata, and S. Ibukuro, “Optical second-harmonic generation due to guided-wave structure consisting of quartz and glass film,” IEEE J. Quantum Electron. QE-10, 222–229 (1974).
[CrossRef]

W. K. Burns and A. B. Lee, “Observation of noncritically phase-matched second-harmonic generation in an optical waveguide,” Appl. Phys. Lett. 24, 222–224 (1974).
[CrossRef]

1973 (3)

W. K. Burns and R. A. Andrews, “ “Noncritical” phase matching in optical waveguides,” Appl. Phys. Lett. 22, 143–145 (1973).
[CrossRef]

Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett. 23, 137–138 (1973).
[CrossRef]

R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
[CrossRef] [PubMed]

1970 (2)

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second-harmonic generation in form of coherent Čerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

1968 (1)

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

Akhmediev, N. N.

N. N. Akhmediev and V. R. Novak, “Enhancement of nonlinear-optical mode conversion efficiency in the thin film waveguide,” Opt. Spectrosc. (USSR) 58, 558–559 (1985).

Andrews, R. A.

W. K. Burns and R. A. Andrews, “ “Noncritical” phase matching in optical waveguides,” Appl. Phys. Lett. 22, 143–145 (1973).
[CrossRef]

Armstrong, N. J.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

K. Clays, N. J. Armstrong, and T. L. Penner, “Blue and green Čerenkov-type second-harmonic generation in a polymeric Langmuir–Blodgett waveguide,” J. Opt. Soc. Am. B 10, 886–893 (1993).
[CrossRef]

Barzoukas, M.

Bona, G. L.

W. J. Kzlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett. 56, 2291–2292 (1990).
[CrossRef]

Bosshard, C.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir-Blodgett film waveguides by mode conversions,” Adv. Mater. 4, 795–798 (1992).
[CrossRef]

Burns, W. K.

W. K. Burns and A. B. Lee, “Observation of noncritically phase-matched second-harmonic generation in an optical waveguide,” Appl. Phys. Lett. 24, 222–224 (1974).
[CrossRef]

W. K. Burns and R. A. Andrews, “ “Noncritical” phase matching in optical waveguides,” Appl. Phys. Lett. 22, 143–145 (1973).
[CrossRef]

Chikuma, K.

Claude, C.

T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
[CrossRef]

Clays, K.

Eger, D.

D. Eger, M. Oron, and M. Katz, “Optical characterization of KTiOPO4 periodically segmented waveguides for second-harmonic generation of blue light,” J. Appl. Phys. 74, 4298–4302 (1993).
[CrossRef]

Etter, M. C.

T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson, and M. C. Etter, “Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials,” J. Am. Chem. Soc. 109, 7786–7797 (1987).
[CrossRef]

Ezenyilimba, M. C.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

Fejer, M. M.

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[CrossRef]

Feuer, B.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

Flörsheimer, M.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir-Blodgett film waveguides by mode conversions,” Adv. Mater. 4, 795–798 (1992).
[CrossRef]

Fremaux, P.

Funato, S.

Furuya, K.

Y. Suematsu, Y. Sasaki, K. Furuya, K. Shibata, and S. Ibukuro, “Optical second-harmonic generation due to guided-wave structure consisting of quartz and glass film,” IEEE J. Quantum Electron. QE-10, 222–229 (1974).
[CrossRef]

Günter, P.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir-Blodgett film waveguides by mode conversions,” Adv. Mater. 4, 795–798 (1992).
[CrossRef]

Haas, D.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

Hotta, K.

Ibukuro, S.

Y. Suematsu, Y. Sasaki, K. Furuya, K. Shibata, and S. Ibukuro, “Optical second-harmonic generation due to guided-wave structure consisting of quartz and glass film,” IEEE J. Quantum Electron. QE-10, 222–229 (1974).
[CrossRef]

Inaba, H.

Ito, H.

Ito, R.

Itoh, H.

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Johnson, R.

T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson, and M. C. Etter, “Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials,” J. Am. Chem. Soc. 109, 7786–7797 (1987).
[CrossRef]

Johnson, R. E.

Josse, D.

Jung, J.

Karim, D.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

Kato, M.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Y. Kitaoka, S. Ohmori, K. Yamamoto, M. Kato, and T. Sasaki, “Stable and efficient green light generation by intracavity frequency doubling of Nd:YVO4 lasers,” Appl. Phys. Lett. 63, 299–301 (1993).
[CrossRef]

Katz, M.

D. Eger, M. Oron, and M. Katz, “Optical characterization of KTiOPO4 periodically segmented waveguides for second-harmonic generation of blue light,” J. Appl. Phys. 74, 4298–4302 (1993).
[CrossRef]

Khanarian, G.

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

R. A. Norwood and G. Khanarian, “Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide,” Electron. Lett. 26, 2105–2107 (1990).
[CrossRef]

Kinoshita, T.

Kitaoka, Y.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Y. Kitaoka, S. Ohmori, K. Yamamoto, M. Kato, and T. Sasaki, “Stable and efficient green light generation by intracavity frequency doubling of Nd:YVO4 lasers,” Appl. Phys. Lett. 63, 299–301 (1993).
[CrossRef]

Kobayashi, M.

Kondo, T.

Kumata, K.

Küpfer, M.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir-Blodgett film waveguides by mode conversions,” Adv. Mater. 4, 795–798 (1992).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

Kzlovsky, W. J.

W. J. Kzlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett. 56, 2291–2292 (1990).
[CrossRef]

Latta, E. E.

W. J. Kzlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett. 56, 2291–2292 (1990).
[CrossRef]

Lee, A. B.

W. K. Burns and A. B. Lee, “Observation of noncritically phase-matched second-harmonic generation in an optical waveguide,” Appl. Phys. Lett. 24, 222–224 (1974).
[CrossRef]

Lenth, W.

W. J. Kzlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett. 56, 2291–2292 (1990).
[CrossRef]

Lim, E. J.

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[CrossRef]

Looser, H.

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir-Blodgett film waveguides by mode conversions,” Adv. Mater. 4, 795–798 (1992).
[CrossRef]

Martin, R. J.

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second-harmonic generation in form of coherent Čerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

Matsumoto, S.

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[CrossRef]

Miyata, S.

T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
[CrossRef]

Mizuuchi, K.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Milliwatt-order blue-light generation in a periodically domain-inverted LiTaO3 waveguide,” Opt. Lett. 16, 1156–1158 (1992).
[CrossRef]

Morley, J. O.

Moser, A.

W. J. Kzlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett. 56, 2291–2292 (1990).
[CrossRef]

Motschmann, H. R.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 17, 435–436 (1993).
[CrossRef]

Nicoud, J. F.

Norwood, R. A.

H. Yamamoto, S. Funato, T. Sugiyama, R. E. Johnson, R. A. Norwood, J. Jung, T. Kinoshita, and K. Sasaki, “Linear and nonlinear optical properties of a new organic crystal N-(4-aminobenzenesulfonyl) acetamide (ABSA),” J. Opt. Soc. Am. B 13, 837–847 (1996).
[CrossRef]

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

R. A. Norwood and G. Khanarian, “Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide,” Electron. Lett. 26, 2105–2107 (1990).
[CrossRef]

Novak, V. R.

N. N. Akhmediev and V. R. Novak, “Enhancement of nonlinear-optical mode conversion efficiency in the thin film waveguide,” Opt. Spectrosc. (USSR) 58, 558–559 (1985).

Ohmori, S.

Y. Kitaoka, S. Ohmori, K. Yamamoto, M. Kato, and T. Sasaki, “Stable and efficient green light generation by intracavity frequency doubling of Nd:YVO4 lasers,” Appl. Phys. Lett. 63, 299–301 (1993).
[CrossRef]

Okamoto, S.

Okamoto, Y.

T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
[CrossRef]

Oron, M.

D. Eger, M. Oron, and M. Katz, “Optical characterization of KTiOPO4 periodically segmented waveguides for second-harmonic generation of blue light,” J. Appl. Phys. 74, 4298–4302 (1993).
[CrossRef]

Oudar, J. L.

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

Panunto, T. W.

T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson, and M. C. Etter, “Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials,” J. Am. Chem. Soc. 109, 7786–7797 (1987).
[CrossRef]

Penner, T. L.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

K. Clays, N. J. Armstrong, and T. L. Penner, “Blue and green Čerenkov-type second-harmonic generation in a polymeric Langmuir–Blodgett waveguide,” J. Opt. Soc. Am. B 10, 886–893 (1993).
[CrossRef]

Perry, T. T.

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

Rikken, G. L. J. A.

G. L. J. A. Rikken, C. J. E. Seppen, E. G. J. Staring, and A. H. J. Venhuizen, “Efficient modal dispersion phase-matched frequency doubling in poled polymer waveguides,” Appl. Phys. Lett. 62, 2483–2485 (1993).
[CrossRef]

Roberts, D. A.

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 17, 435–436 (1993).
[CrossRef]

Sasaki, K.

Sasaki, T.

Y. Kitaoka, S. Ohmori, K. Yamamoto, M. Kato, and T. Sasaki, “Stable and efficient green light generation by intracavity frequency doubling of Nd:YVO4 lasers,” Appl. Phys. Lett. 63, 299–301 (1993).
[CrossRef]

Sasaki, Y.

Y. Suematsu, Y. Sasaki, K. Furuya, K. Shibata, and S. Ibukuro, “Optical second-harmonic generation due to guided-wave structure consisting of quartz and glass film,” IEEE J. Quantum Electron. QE-10, 222–229 (1974).
[CrossRef]

Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett. 23, 137–138 (1973).
[CrossRef]

Schildkraut, J. S.

Seaton, C. T.

G. I. Stegeman, C. T. Seaton, and R. Zanoni, “Organic films in non-linear integrated optics structures,” Thin Solid Films 152, 231–263 (1987).
[CrossRef]

Seppen, C. J. E.

G. L. J. A. Rikken, C. J. E. Seppen, E. G. J. Staring, and A. H. J. Venhuizen, “Efficient modal dispersion phase-matched frequency doubling in poled polymer waveguides,” Appl. Phys. Lett. 62, 2483–2485 (1993).
[CrossRef]

Shibata, K.

Y. Suematsu, Y. Sasaki, K. Furuya, K. Shibata, and S. Ibukuro, “Optical second-harmonic generation due to guided-wave structure consisting of quartz and glass film,” IEEE J. Quantum Electron. QE-10, 222–229 (1974).
[CrossRef]

Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett. 23, 137–138 (1973).
[CrossRef]

Shimoda, S.

T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
[CrossRef]

Staring, E. G. J.

G. L. J. A. Rikken, C. J. E. Seppen, E. G. J. Staring, and A. H. J. Venhuizen, “Efficient modal dispersion phase-matched frequency doubling in poled polymer waveguides,” Appl. Phys. Lett. 62, 2483–2485 (1993).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, C. T. Seaton, and R. Zanoni, “Organic films in non-linear integrated optics structures,” Thin Solid Films 152, 231–263 (1987).
[CrossRef]

Suematsu, Y.

Y. Suematsu, Y. Sasaki, K. Furuya, K. Shibata, and S. Ibukuro, “Optical second-harmonic generation due to guided-wave structure consisting of quartz and glass film,” IEEE J. Quantum Electron. QE-10, 222–229 (1974).
[CrossRef]

Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett. 23, 137–138 (1973).
[CrossRef]

Sugihara, O.

Sugiyama, T.

Takara, H.

Taniuchi, T.

Tao, X.

T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
[CrossRef]

Terui, H.

Tien, P. K.

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second-harmonic generation in form of coherent Čerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

Torge, R.

Uemiya, T.

Uenishi, N.

Ulrich, R.

R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
[CrossRef] [PubMed]

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second-harmonic generation in form of coherent Čerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

Umegaki, S.

Urbanczyk-Lipkowska, Z.

T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson, and M. C. Etter, “Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials,” J. Am. Chem. Soc. 109, 7786–7797 (1987).
[CrossRef]

Usui, H.

T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
[CrossRef]

Venhuizen, A. H. J.

G. L. J. A. Rikken, C. J. E. Seppen, E. G. J. Staring, and A. H. J. Venhuizen, “Efficient modal dispersion phase-matched frequency doubling in poled polymer waveguides,” Appl. Phys. Lett. 62, 2483–2485 (1993).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 17, 435–436 (1993).
[CrossRef]

Watanabe, T.

T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
[CrossRef]

Williams, D. J.

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 17, 435–436 (1993).
[CrossRef]

Yamamoto, H.

Yamamoto, K.

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

Y. Kitaoka, S. Ohmori, K. Yamamoto, M. Kato, and T. Sasaki, “Stable and efficient green light generation by intracavity frequency doubling of Nd:YVO4 lasers,” Appl. Phys. Lett. 63, 299–301 (1993).
[CrossRef]

K. Yamamoto, K. Mizuuchi, and T. Taniuchi, “Milliwatt-order blue-light generation in a periodically domain-inverted LiTaO3 waveguide,” Opt. Lett. 16, 1156–1158 (1992).
[CrossRef]

Zanoni, R.

G. I. Stegeman, C. T. Seaton, and R. Zanoni, “Organic films in non-linear integrated optics structures,” Thin Solid Films 152, 231–263 (1987).
[CrossRef]

Zou, D.

T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
[CrossRef]

Zyss, J.

Adv. Mater. (1)

M. Flörsheimer, M. Küpfer, C. Bosshard, H. Looser, and P. Günter, “Phase-matched optical second-harmonic generation in Langmuir-Blodgett film waveguides by mode conversions,” Adv. Mater. 4, 795–798 (1992).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (11)

G. L. J. A. Rikken, C. J. E. Seppen, E. G. J. Staring, and A. H. J. Venhuizen, “Efficient modal dispersion phase-matched frequency doubling in poled polymer waveguides,” Appl. Phys. Lett. 62, 2483–2485 (1993).
[CrossRef]

Y. Kitaoka, S. Ohmori, K. Yamamoto, M. Kato, and T. Sasaki, “Stable and efficient green light generation by intracavity frequency doubling of Nd:YVO4 lasers,” Appl. Phys. Lett. 63, 299–301 (1993).
[CrossRef]

W. J. Kzlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett. 56, 2291–2292 (1990).
[CrossRef]

P. K. Tien, R. Ulrich, and R. J. Martin, “Optical second-harmonic generation in form of coherent Čerenkov radiation from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 17, 435–436 (1993).
[CrossRef]

K. Yamamoto, K. Mizuuchi, Y. Kitaoka, and M. Kato, “High power blue light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide,” Appl. Phys. Lett. 62, 2599–2601 (1993).
[CrossRef]

G. Khanarian, R. A. Norwood, D. Haas, B. Feuer, and D. Karim, “Phase-matched second-harmonic generation in a polymer waveguide,” Appl. Phys. Lett. 57, 977–979 (1990).
[CrossRef]

W. K. Burns and R. A. Andrews, “ “Noncritical” phase matching in optical waveguides,” Appl. Phys. Lett. 22, 143–145 (1973).
[CrossRef]

W. K. Burns and A. B. Lee, “Observation of noncritically phase-matched second-harmonic generation in an optical waveguide,” Appl. Phys. Lett. 24, 222–224 (1974).
[CrossRef]

E. J. Lim, S. Matsumoto, and M. M. Fejer, “Noncritical phase matching for guided-wave frequency conversion,” Appl. Phys. Lett. 57, 2294–2296 (1990).
[CrossRef]

Y. Suematsu, Y. Sasaki, and K. Shibata, “Second-harmonic generation due to a guided wave structure consisting of quartz coated with a glass film,” Appl. Phys. Lett. 23, 137–138 (1973).
[CrossRef]

Electron. Lett. (1)

R. A. Norwood and G. Khanarian, “Quasi-phase-matched frequency doubling over 5 mm in periodically poled polymer waveguide,” Electron. Lett. 26, 2105–2107 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. Suematsu, Y. Sasaki, K. Furuya, K. Shibata, and S. Ibukuro, “Optical second-harmonic generation due to guided-wave structure consisting of quartz and glass film,” IEEE J. Quantum Electron. QE-10, 222–229 (1974).
[CrossRef]

D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992).
[CrossRef]

J. Am. Chem. Soc. (1)

T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson, and M. C. Etter, “Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials,” J. Am. Chem. Soc. 109, 7786–7797 (1987).
[CrossRef]

J. Appl. Phys. (3)

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39, 3798–3813 (1968).
[CrossRef]

D. Eger, M. Oron, and M. Katz, “Optical characterization of KTiOPO4 periodically segmented waveguides for second-harmonic generation of blue light,” J. Appl. Phys. 74, 4298–4302 (1993).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

J. Opt. Soc. Am. B (5)

Mol. Cyst. Liq. Cryst. (1)

T. Watanabe, D. Zou, S. Shimoda, X. Tao, H. Usui, S. Miyata, C. Claude, and Y. Okamoto, “A novel phase matching technique for a poled polymer waveguide,” Mol. Cyst. Liq. Cryst. 255, 95–102 (1994).
[CrossRef]

Nature (1)

T. L. Penner, H. R. Motschmann, N. J. Armstrong, M. C. Ezenyilimba, and D. J. Williams, “Efficient phase-matched second-harmonic generation of blue light in an organic waveguide,” Nature 367, 49–51 (1994).
[CrossRef]

Opt. Lett. (2)

Opt. Spectrosc. (USSR) (1)

N. N. Akhmediev and V. R. Novak, “Enhancement of nonlinear-optical mode conversion efficiency in the thin film waveguide,” Opt. Spectrosc. (USSR) 58, 558–559 (1985).

Phys. Rev. A (1)

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- or two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

Thin Solid Films (1)

G. I. Stegeman, C. T. Seaton, and R. Zanoni, “Organic films in non-linear integrated optics structures,” Thin Solid Films 152, 231–263 (1987).
[CrossRef]

Other (3)

D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Sym. Ser. 233 (American Chemical Society, Washington, DC, 1983).

D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2 (Academic, Orlando, Fla, 1987).

S. Miyata, eds., Proceedings of the Fifth Toyota Conference on Nonlinear Optical Materials (Elsevier Science, Amsterdam, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The chemical structures of the top five urea derivatives. CECPU, 2-chloroethyl-4-ethoxycarbonylphenylurea; PAPU, phenyl-4-acetylphenylurea; PCPU, propyl-4-cyanophenylurea; BMCPU, butyl-4-methoxycarbonylphenylurea; IAPU, isopropyl-4-actelyphenylurea.

Fig. 2
Fig. 2

ORTEP structure of the IAPU molecule in the crystal.

Fig. 3
Fig. 3

Crystal structure of IAPU projected along the (a) a axis, (b) b axis, (c) c axis.

Fig. 4
Fig. 4

Typical crystal habit of IAPU.

Fig. 5
Fig. 5

Microscope photograph of typical crystalline IAPU waveguide films.

Fig. 6
Fig. 6

AFM picture of IAPU film surface.

Fig. 7
Fig. 7

UV-near infrared spectrum of a 1.2-mm thick IAPU crystal for nonpolarized light incident on the (100) plane.

Fig. 8
Fig. 8

Wavelength dispersion curve of the refractive index ny of the IAPU crystal.

Fig. 9
Fig. 9

Maker fringe of IAPU d22 with the inset showing the experimental configuration.

Fig. 10
Fig. 10

TE modal dispersion curves in the air–IAPU–BK7 three-layer waveguide for the fundamental wave (1064 nm) and its SH wave (532 nm).

Fig. 11
Fig. 11

Refractive-index dispersions of sputtered Ta2O5SiO2 films made from a different Ta2O5 fraction contained in the target. The target composition ratio for the square is Ta2O5 100 mol%; for the circle, Ta2O5 is 60 mol%, and for the triangle, Ta2O5 is 40 mol%.

Fig. 12
Fig. 12

(a) Modal-dispersion curves of the TE0ω mode and the TE12ω mode in the four-layer waveguide for the fundamental wavelength 884 nm. Thin solid line, ω mode; thick solid curve, 2ω mode. (b) Calculated SH intensity as a function of the second-layer thickness t for w=253 nm.

Fig. 13
Fig. 13

Electric-field distributions of the fundamental TE0ω mode and the SH TE12ω mode in the four-layer waveguide at the fundamental wavelength 884 nm.

Tables (3)

Tables Icon

Table 1 Summary of the Top Five Urea Derivatives

Tables Icon

Table 2 Single Crystal Data of IAPU

Tables Icon

Table 3 Experimental and Fitted Values of the Refractive Indicesa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

βxxx2ω=F(W, ω)×β(0),
F(W, ω)=Weg4[Weg2-(2ω)2][Weg2-(ω)2],
β(0)=3e224mε0Weg3.
nY2=A+Bλ2/(λ2-C)-Dλ2,
Py2ω=0(d21ExωExω+d22EyωEyω+d23EzωEzω+2d25ExωEzω),
dIJK=NZfI2ωfJωfKωijks cos θIi(s) cos θJj(s) cos θKk(s)×βijk(s),
lcexp=l(sin2 θm+1-sin2 θm)4nωn2ω,
lfit=0.5141mm,d22=30.5pm/V,
lcexp=2.94µm,lccal=3.34µm.
P2ω=ε02ω22(Pω)2w0tL2Snm2 sin2(ΔβL/2)(ΔβL/2)2,
Snm=t-d22(x){Enω(x, z)}2Em2ω(x, z)dx,

Metrics