Abstract

We observed a strong second-order optical nonlinearity in a fused silica glass poled under the condition of a static electric field of 4 kV/mm at 260 °C. The nonlinearity layer was localized in the surface region contacted on the positive electrode during poling in a thickness comparable to or thinner than the interaction length of 22 µm. The second-order nonlinearity was not observed in synthetic silica glass under the same poling condition. However, when the synthetic glass was first exposed to x-ray radiation, the poling induced a nonlinearity of almost the same value as that in the fused silica glass, which we attribute to the x-ray formation of defects. The values were found to depend on water contents in the synthetic silica glass.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica glass,” Opt. Lett. 16, 1732–1734 (1991).
    [CrossRef] [PubMed]
  2. N. Mukherjee, R. A. Myers, and S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B 11, 665–669 (1994).
    [CrossRef]
  3. P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipole?” Opt. Commun. 110, 611–614 (1994).
    [CrossRef]
  4. L. J. Henry, A. D. DeVilbiss, and T. E. Tsai, “Effect of preannealing on the level of second-harmonic generation and defect sites achieved in poled low-water fused silica,” J. Opt. Soc. Am. B 12, 2037–2045 (1995).
    [CrossRef]
  5. H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
    [CrossRef]
  6. K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Effect of γ-irradiation on optical second harmonic intensity of electrically poled silica glass,” Jpn. J. Appl. Phys. 34, L173–L174 (1995).
    [CrossRef]
  7. D. L. Griscom, “Growth and decay kinetics of defect centers in high-purity fused silicas irradiated at 77K with X-rays or 6.4-eV laser light,” Nucl. Inst. Methods B 46, 12–17 (1990).
    [CrossRef]
  8. F. L. Galeener, D. B. Kerwin, and A. J. Miller, “X-ray creation and activation of electron spin resonance in vitreous silics,” Phys. Rev. B 47, 7760–7779 (1993).
    [CrossRef]
  9. F. L. Galeener, D. B. Kerwin, A. J. Miller, and J. C. Mikkelsen, Jr., “Nonlinear X-ray production of defect spins in vitreous SiO2: the poles of creation and activation,” Solid State Commun. 82, 271–275 (1992).
    [CrossRef]
  10. S. Singh, in Handbook of Lasers with Selected Data on Optical Technology, R. J. Pressley, ed. (CRC, Cleveland, Ohio, 1971), Chap. 18, p. 246.
  11. J. H. Hubbell, W. H. McMaster, N. K. Del Grande, and J. H. Mallett, International Tables for X-Ray Crystallography, J. A. Ibers and W. C. Hamilton, eds. (Kynoch, Birmingham, UK, 1974), Vol. 4, pp. 61–66.
  12. H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
    [CrossRef]

1995 (3)

1994 (2)

N. Mukherjee, R. A. Myers, and S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B 11, 665–669 (1994).
[CrossRef]

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipole?” Opt. Commun. 110, 611–614 (1994).
[CrossRef]

1993 (2)

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

F. L. Galeener, D. B. Kerwin, and A. J. Miller, “X-ray creation and activation of electron spin resonance in vitreous silics,” Phys. Rev. B 47, 7760–7779 (1993).
[CrossRef]

1992 (1)

F. L. Galeener, D. B. Kerwin, A. J. Miller, and J. C. Mikkelsen, Jr., “Nonlinear X-ray production of defect spins in vitreous SiO2: the poles of creation and activation,” Solid State Commun. 82, 271–275 (1992).
[CrossRef]

1991 (1)

1990 (1)

D. L. Griscom, “Growth and decay kinetics of defect centers in high-purity fused silicas irradiated at 77K with X-rays or 6.4-eV laser light,” Nucl. Inst. Methods B 46, 12–17 (1990).
[CrossRef]

Brueck, S. R. J.

DeVilbiss, A. D.

Galeener, F. L.

F. L. Galeener, D. B. Kerwin, and A. J. Miller, “X-ray creation and activation of electron spin resonance in vitreous silics,” Phys. Rev. B 47, 7760–7779 (1993).
[CrossRef]

F. L. Galeener, D. B. Kerwin, A. J. Miller, and J. C. Mikkelsen, Jr., “Nonlinear X-ray production of defect spins in vitreous SiO2: the poles of creation and activation,” Solid State Commun. 82, 271–275 (1992).
[CrossRef]

Griscom, D. L.

D. L. Griscom, “Growth and decay kinetics of defect centers in high-purity fused silicas irradiated at 77K with X-rays or 6.4-eV laser light,” Nucl. Inst. Methods B 46, 12–17 (1990).
[CrossRef]

Henry, L. J.

Hirao, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Effect of γ-irradiation on optical second harmonic intensity of electrically poled silica glass,” Jpn. J. Appl. Phys. 34, L173–L174 (1995).
[CrossRef]

Hosono, H.

Kamiya, K.

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Kashima, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Effect of γ-irradiation on optical second harmonic intensity of electrically poled silica glass,” Jpn. J. Appl. Phys. 34, L173–L174 (1995).
[CrossRef]

Kazansky, P. G.

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipole?” Opt. Commun. 110, 611–614 (1994).
[CrossRef]

Kerwin, D. B.

F. L. Galeener, D. B. Kerwin, and A. J. Miller, “X-ray creation and activation of electron spin resonance in vitreous silics,” Phys. Rev. B 47, 7760–7779 (1993).
[CrossRef]

F. L. Galeener, D. B. Kerwin, A. J. Miller, and J. C. Mikkelsen, Jr., “Nonlinear X-ray production of defect spins in vitreous SiO2: the poles of creation and activation,” Solid State Commun. 82, 271–275 (1992).
[CrossRef]

Kurachi, K.

Matsuoka, J.

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Mikkelsen , Jr., J. C.

F. L. Galeener, D. B. Kerwin, A. J. Miller, and J. C. Mikkelsen, Jr., “Nonlinear X-ray production of defect spins in vitreous SiO2: the poles of creation and activation,” Solid State Commun. 82, 271–275 (1992).
[CrossRef]

Miller, A. J.

F. L. Galeener, D. B. Kerwin, and A. J. Miller, “X-ray creation and activation of electron spin resonance in vitreous silics,” Phys. Rev. B 47, 7760–7779 (1993).
[CrossRef]

F. L. Galeener, D. B. Kerwin, A. J. Miller, and J. C. Mikkelsen, Jr., “Nonlinear X-ray production of defect spins in vitreous SiO2: the poles of creation and activation,” Solid State Commun. 82, 271–275 (1992).
[CrossRef]

Mito, A.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Effect of γ-irradiation on optical second harmonic intensity of electrically poled silica glass,” Jpn. J. Appl. Phys. 34, L173–L174 (1995).
[CrossRef]

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Mukherjee, N.

Myers, R. A.

Nasu, H.

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Effect of γ-irradiation on optical second harmonic intensity of electrically poled silica glass,” Jpn. J. Appl. Phys. 34, L173–L174 (1995).
[CrossRef]

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Okamoto, H.

H. Nasu, H. Okamoto, K. Kurachi, J. Matsuoka, K. Kamiya, A. Mito, and H. Hosono, “Second-harmonic generation from electrically poled SiO2 glasses: effects of OH concentration, defects, and poling conditions,” J. Opt. Soc. Am. B 12, 644–649 (1995).
[CrossRef]

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

Russell, P. St. J.

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipole?” Opt. Commun. 110, 611–614 (1994).
[CrossRef]

Soga, N.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Effect of γ-irradiation on optical second harmonic intensity of electrically poled silica glass,” Jpn. J. Appl. Phys. 34, L173–L174 (1995).
[CrossRef]

Tanaka, K.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Effect of γ-irradiation on optical second harmonic intensity of electrically poled silica glass,” Jpn. J. Appl. Phys. 34, L173–L174 (1995).
[CrossRef]

Tsai, T. E.

Yamagata, S.

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Effect of γ-irradiation on optical second harmonic intensity of electrically poled silica glass,” Jpn. J. Appl. Phys. 34, L173–L174 (1995).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (2)

H. Nasu, H. Okamoto, A. Mito, J. Matsuoka, and K. Kamiya, “Influence of the OH content on second harmonic generation from electrically polarized SiO2 glasses,” Jpn. J. Appl. Phys. 32, L406–L407 (1993).
[CrossRef]

K. Tanaka, K. Kashima, K. Hirao, N. Soga, S. Yamagata, A. Mito, and H. Nasu, “Effect of γ-irradiation on optical second harmonic intensity of electrically poled silica glass,” Jpn. J. Appl. Phys. 34, L173–L174 (1995).
[CrossRef]

Nucl. Inst. Methods B (1)

D. L. Griscom, “Growth and decay kinetics of defect centers in high-purity fused silicas irradiated at 77K with X-rays or 6.4-eV laser light,” Nucl. Inst. Methods B 46, 12–17 (1990).
[CrossRef]

Opt. Commun. (1)

P. G. Kazansky and P. St. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipole?” Opt. Commun. 110, 611–614 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

F. L. Galeener, D. B. Kerwin, and A. J. Miller, “X-ray creation and activation of electron spin resonance in vitreous silics,” Phys. Rev. B 47, 7760–7779 (1993).
[CrossRef]

Solid State Commun. (1)

F. L. Galeener, D. B. Kerwin, A. J. Miller, and J. C. Mikkelsen, Jr., “Nonlinear X-ray production of defect spins in vitreous SiO2: the poles of creation and activation,” Solid State Commun. 82, 271–275 (1992).
[CrossRef]

Other (2)

S. Singh, in Handbook of Lasers with Selected Data on Optical Technology, R. J. Pressley, ed. (CRC, Cleveland, Ohio, 1971), Chap. 18, p. 246.

J. H. Hubbell, W. H. McMaster, N. K. Del Grande, and J. H. Mallett, International Tables for X-Ray Crystallography, J. A. Ibers and W. C. Hamilton, eds. (Kynoch, Birmingham, UK, 1974), Vol. 4, pp. 61–66.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for poling silica-glass plates. The plates were 20 mm in diameter and 1.2 mm in thickness.

Fig. 2
Fig. 2

Schematic illustration of the SHG intensity measurement system. ND, neutral density; PMT, photomultiplier tube.

Fig. 3
Fig. 3

(a) X-ray-exposed surface of a synthetic silica glass plate was placed on the negative electrode and (b) on the positive electrode to produce silica samples poled with opposite polarities. Shading in silica-glass plates represents a high concentration of induced defects.

Fig. 4
Fig. 4

SHG intensities produced in the fused silica glass plotted against the incident angle of a Nd:YAG laser beam for p-polarized light.

Fig. 5
Fig. 5

SHG signal intensities plotted against the incident angle of a Nd:YAG laser beam for high-water-content synthetic silica glass before the x-ray exposure (□) and after the x-ray exposure for the poling geometry of Fig. 3(a) (○) and Fig. 3(b) (●).

Fig. 6
Fig. 6

SHG intensities plotted against x-ray dose in high-water-content synthetic silica glass for a 45° incident angle and the poling geometry of Fig. 3(b).

Fig. 7
Fig. 7

SHG intensity (open squares) produced by the poled low-water silica glass after x-ray exposure is plotted against the incident angle of a Nd:YAG laser beam. For comparison the SHG intensity observed in the high-water-content silica glass (solid circles) is also plotted for a sample exposed to x rays and poled.

Metrics